Skip to main content

Drug Development for Neurodegenerative Diseases

  • Chapter

Abstract

Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and the polyglutamine diseases, have been defined as a group of intractable disorders, which are characterized by the progressive degeneration of neurons in various regions of the brain, resulting in neurological and psychiatric symptoms. Molecular genetics and biological studies have revealed that most neurodegenerative diseases are caused by protein misfolding and aggregation, and hence they are considered to belong to the so-called protein misfolding diseases. Moreover, recent emerging evidence has suggested that the misfolded protein aggregates formed in these diseases have similar intrinsic characteristics, i.e., they are propagated by prion-like infectious mechanisms. Therefore, various therapeutic strategies targeting protein misfolding and aggregation are being extensively explored. Here we introduce emerging disease-modifying therapeutic approaches against neurodegenerative diseases, particularly those targeting the misfolding and aggregation of toxic proteins. The development of anti-misfolding and anti-aggregation agents that are commonly effective against a wide range of neurodegenerative diseases is eagerly anticipated in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith JP, Perez K, Laughton K, Li QX, Charman SA, Nicolazzo JA, Wilkins S, Deleva K, Lynch T, Kok G, Ritchie CW, Tanzi RE, Cappai R, Masters CL, Barnham KJ, Bush AI (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59(1):43–55. doi:10.1016/j.neuron.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  • Aisen PS, Gauthier S, Ferris SH, Saumier D, Haine D, Garceau D, Duong A, Suhy J, Oh J, Lau WC, Sampalis J (2011) Tramiprosate in mild-to-moderate Alzheimer’s disease – a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci AMS 7(1):102–111. doi:10.5114/aoms.2011.20612

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928. doi:10.1073/pnas.121119298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818. doi:10.1021/mp700113r

    Article  CAS  PubMed  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129. doi:10.1523/JNEUROSCI.2361-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Audet JN, Soucy G, Julien JP (2012) Methylene blue administration fails to confer neuroprotection in two amyotrophic lateral sclerosis mouse models. Neuroscience 209:136–143. doi:10.1016/j.neuroscience.2011.12.047

    Article  CAS  PubMed  Google Scholar 

  • Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, Desplats P, Masliah E, Lee SJ (2012) Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32(39):13454–13469. doi:10.1523/JNEUROSCI.1292-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919. doi:10.1038/78682

    Article  CAS  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC, Dominantly Inherited Alzheimer N (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804. doi:10.1056/NEJMoa1202753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer PO, Nukina N (2009) The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 110(6):1737–1765

    Article  CAS  PubMed  Google Scholar 

  • Bignante EA, Heredia F, Morfini G, Lorenzo A (2013) Amyloid β precursor protein as a molecular target for amyloid β – induced neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 34(11):2525–2537. doi:10.1016/j.neurobiolaging.2013.04.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, Messer J, Oroszlan K, Rauchenberger R, Richter WF, Rothe C, Urban M, Bardroff M, Winter M, Nordstedt C, Loetscher H (2012) Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis 28(1):49–69. doi:10.3233/JAD-2011-110977

    CAS  PubMed  Google Scholar 

  • Bonanomi M, Natalello A, Visentin C, Pastori V, Penco A, Cornelli G, Colombo G, Malabarba MG, Doglia SM, Relini A, Regonesi ME, Tortora P (2014) Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model. Hum Mol Genet 23(24):6542–6552. doi:10.1093/hmg/ddu373

    Article  CAS  PubMed  Google Scholar 

  • Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667. doi:10.1111/j.1471-4159.2011.07337.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braithwaite SP, Stock JB, Mouradian MM (2012) α-Synuclein phosphorylation as a therapeutic target in Parkinson’s disease. Rev Neurosci 23(2):191–198. doi:10.1515/revneuro-2011-0067

    CAS  PubMed  Google Scholar 

  • Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350(9071):134–138

    Article  CAS  PubMed  Google Scholar 

  • Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, Buckner N, Hanmer J, Davies P, O’Neill MJ, Hutton ML, Citron M (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467. doi:10.1074/jbc.M111.229633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474. doi:10.1016/S1474-4422(09)70068-7

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, Lotz GP, Yang G, Muchowski PJ, Kodadek T, Bezprozvanny I (2011) Expanded polyglutamine-binding peptoid as a novel therapeutic agent for treatment of Huntington’s disease. Chem Biol 18(9):1113–1125. doi:10.1016/j.chembiol.2011.06.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chopra V, Fox JH, Lieberman G, Dorsey K, Matson W, Waldmeier P, Housman DE, Kazantsev A, Young AB, Hersch S (2007) A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci U S A 104(42):16685–16689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. doi:10.1038/ncb1901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, Messer A, Lindquist S, Ingram VM, Wittrup KD (2004) Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A 101(51):17616–17621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coric V, van Dyck CH, Salloway S, Andreasen N, Brody M, Richter RW, Soininen H, Thein S, Shiovitz T, Pilcher G, Colby S, Rollin L, Dockens R, Pachai C, Portelius E, Andreasson U, Blennow K, Soares H, Albright C, Feldman HH, Berman RM (2012) Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 69(11):1430–1440. doi:10.1001/archneurol.2012.2194

    Article  PubMed  Google Scholar 

  • Dasilva KA, Shaw JE, McLaurin J (2010) Amyloid-β fibrillogenesis: structural insight and therapeutic intervention. Exp Neurol 223(2):311–321. doi:10.1016/j.expneurol.2009.08.032

    Article  CAS  PubMed  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98(15):8850–8855. doi:10.1073/pnas.151261398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. doi:10.1038/nature02261

    Article  CAS  PubMed  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci 5(5):452–457. doi:10.1038/nn842

    CAS  PubMed  Google Scholar 

  • Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Siemers E, Sethuraman G, Mohs R (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369(4):341–350. doi:10.1056/NEJMoa1210951

    Article  CAS  PubMed  Google Scholar 

  • Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R, Alzheimer’s Disease Cooperative Study Steering C, Solanezumab Study G (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321. doi:10.1056/NEJMoa1312889

    Article  CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S, Muchowski PJ, Wanker EE (2006) Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15(18):2743–2751

    Article  CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6):558–566. doi:10.1038/nsmb.1437

    Article  CAS  PubMed  Google Scholar 

  • El-Agnaf OM, Paleologou KE, Greer B, Abogrein AM, King JE, Salem SA, Fullwood NJ, Benson FE, Hewitt R, Ford KJ, Martin FL, Harriott P, Cookson MR, Allsop D (2004) A strategy for designing inhibitors of α-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J 18(11):1315–1317

    CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100(7):4162–4167. doi:10.1073/pnas.0230450100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry J Ment Sci 198(5):351–356. doi:10.1192/bjp.bp.110.080044

    Article  Google Scholar 

  • Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis MC, Parks AL, Xu W, Li J, Gurney M, Myers RL, Himes CS, Hiebsch R, Ruble C, Nye JS, Curtis D (2002) aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev Cell 3(1):85–97. doi:S1534580702001892 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53(1):135–160

    Article  CAS  PubMed  Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852. doi:10.1074/jbc.M808759200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuentealba RA, Marasa J, Diamond MI, Piwnica-Worms D, Weihl CC (2012) An aggregation sensing reporter identifies leflunomide and teriflunomide as polyglutamine aggregate inhibitors. Hum Mol Genet 21(3):664–680. doi:10.1093/hmg/ddr500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J, Szarek WA, Tremblay P (2007) Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 28(4):537–547. doi:10.1016/j.neurobiolaging.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi L, Scarpini E, Galimberti D (2013) Disease-modifying drugs in Alzheimer’s disease. Drug Des Devel Ther 7:1471–1478. doi:10.2147/DDDT.S41431

    PubMed Central  PubMed  Google Scholar 

  • Giacobini E, Gold G (2013) Alzheimer disease therapy--moving from amyloid-β to tau. Nat Rev Neurol 9(12):677–686. doi:10.1038/nrneurol.2013.223

    Article  CAS  PubMed  Google Scholar 

  • Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM, Team ANS (2005) Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64(9):1553–1562. doi:10.1212/01.WNL.0000159740.16984.3C

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Cohen ES, Jakes R, Cohen P (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer’s disease [corrected]. FEBS Lett 312(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem 275(8):5535–5544

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, Rao EJ, Yang M, Ye H, Zhu L, Liu J, Xu M, Yang Y, Wang C, Zhang D, Bigio EH, Mesulam M, Shen Y, Xu Q, Fushimi K, Wu JY (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18(7):822–830. doi:10.1038/nsmb.2053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Ewers M, Burger K, Annas P, Mortberg A, Bogstedt A, Frolich L, Schroder J, Schonknecht P, Riepe MW, Kraft I, Gasser T, Leyhe T, Moller HJ, Kurz A, Basun H (2009) Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 70(6):922–931

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi:10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E (2001) β-Synuclein inhibits α-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. doi:10.1212/WNL.0b013e31828726f5

    Article  PubMed Central  PubMed  Google Scholar 

  • Heiser V, Scherzinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, Lehrach H, Wanker EE (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci U S A 97(12):6739–6744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heiser V, Engemann S, Brocker W, Dunkel I, Boeddrich A, Waelter S, Nordhoff E, Lurz R, Schugardt N, Rautenberg S, Herhaus C, Barnickel G, Bottcher H, Lehrach H, Wanker EE (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci U S A 99(Suppl 4):16400–16406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herbst M, Wanker EE (2006) Therapeutic approaches to polyglutamine diseases: combating protein misfolding and aggregation. Curr Pharm Des 12(20):2543–2555

    Article  CAS  PubMed  Google Scholar 

  • Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR, Maiti P, Frautschy SA, Zeitlin S, Levine MS, Chesselet MF (2012) Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 7:12. doi:10.1186/1750-1326-7-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hockly E, Tse J, Barker AL, Moolman DL, Beunard JL, Revington AP, Holt K, Sunshine S, Moffitt H, Sathasivam K, Woodman B, Wanker EE, Lowden PA, Bates GP (2006) Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL-135 as therapeutics for Huntington’s disease. Neurobiol Dis 21(1):228–236

    Article  CAS  PubMed  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223. doi:10.1016/S0140-6736(08)61075-2

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282(5395):1914–1917

    Article  CAS  PubMed  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705. doi:10.1038/31508

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6(2):143–150. doi:10.1038/72237

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292(5521):1550–1552. doi:10.1126/science.1059946

    Article  CAS  PubMed  Google Scholar 

  • Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284(30):20329–20339. doi:10.1074/jbc.M109.010264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. doi:10.1038/nature12481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsuno M, Banno H, Suzuki K, Takeuchi Y, Kawashima M, Yabe I, Sasaki H, Aoki M, Morita M, Nakano I, Kanai K, Ito S, Ishikawa K, Mizusawa H, Yamamoto T, Tsuji S, Hasegawa K, Shimohata T, Nishizawa M, Miyajima H, Kanda F, Watanabe Y, Nakashima K, Tsujino A, Yamashita T, Uchino M, Fujimoto Y, Tanaka F, Sobue G, Japan SITfTAPSRsg (2010) Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 9(9):875–884. doi:10.1016/S1474-4422(10)70182-4

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev A, Walker HA, Slepko N, Bear JE, Preisinger E, Steffan JS, Zhu YZ, Gertler FB, Housman DE, Marsh JL, Thompson LM (2002) A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet 30(4):367–376

    Article  CAS  PubMed  Google Scholar 

  • Khoshnan A, Ko J, Patterson PH (2002) Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci U S A 99(2):1002–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW, group PEs (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7(9):779–786. doi:10.1016/S1474-4422(08)70167-4

    Article  CAS  PubMed  Google Scholar 

  • Lannfelt L, Relkin NR, Siemers ER (2014) Amyloid-ss-directed immunotherapy for Alzheimer’s disease. J Intern Med 275(3):284–295. doi:10.1111/joim.12168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39. doi:10.1186/1750-1326-6-39

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120(5):701–713. doi:10.1016/j.cell.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  • Lecerf JM, Shirley TL, Zhu Q, Kazantsev A, Amersdorfer P, Housman DE, Messer A, Huston JS (2001) Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci U S A 98(8):4764–4769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KW, Chen W, Junn E, Im JY, Grosso H, Sonsalla PK, Feng X, Ray N, Fernandez JR, Chao Y, Masliah E, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM (2011) Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J Neurosci 31(19):6963–6971. doi:10.1523/JNEUROSCI.6513-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066. doi:10.1016/S0140-6736(09)60492-X

    Article  CAS  PubMed  Google Scholar 

  • Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40(6):1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu M, Rajamani S, Uversky VN, Fink AL (2004) Rifampicin inhibits α-synuclein fibrillation and disaggregates fibrils. Chem Biol 11(11):1513–1521. doi:10.1016/j.chembiol.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  • Li M, Huang Y, Ma AA, Lin E, Diamond MI (2009) Y-27632 improves rotarod performance and reduces huntingtin levels in R6/2 mice. Neurobiol Dis 36(3):413–420. doi:10.1016/j.nbd.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  • Li M, Yasumura D, Ma AA, Matthes MT, Yang H, Nielson G, Huang Y, Szoka FC, Lavail MM, Diamond MI (2013) Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of huntington disease. PLoS One 8(2), e56026. doi:10.1371/journal.pone.0056026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Low PA, Robertson D, Gilman S, Kaufmann H, Singer W, Biaggioni I, Freeman R, Perlman S, Hauser RA, Cheshire W, Lessig S, Vernino S, Mandrekar J, Dupont WD, Chelimsky T, Galpern WR (2014) Efficacy and safety of rifampicin for multiple system atrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 13(3):268–275. doi:10.1016/S1474-4422(13)70301-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 4(3):231–232. doi:10.1038/85059

    Article  CAS  PubMed  Google Scholar 

  • Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23(6):1992–1996

    CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D (2005) Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868. doi:10.1016/j.neuron.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774. doi:10.1126/science.1197623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MH, Phinney AL, Darabie AA, Cousins JE, French JE, Lan MF, Chen F, Wong SS, Mount HT, Fraser PE, Westaway D, St George-Hyslop P (2006) Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 12(7):801–808. doi:10.1038/nm1423

    Article  CAS  PubMed  Google Scholar 

  • Michalik A, Van Broeckhoven C (2003) Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 12(Spec No 2):R173–R186

    Article  CAS  PubMed  Google Scholar 

  • Monroy A, Lithgow GJ, Alavez S (2013) Curcumin and neurodegenerative diseases. Biofactors 39(1):122–132. doi:10.1002/biof.1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagai Y, Popiel HA (2008) Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: exposed β-sheet hypothesis. Curr Pharm Des 14(30):3267–3279

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Tucker T, Ren H, Kenan DJ, Henderson BS, Keene JD, Strittmatter WJ, Burke JR (2000) Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem 275(14):10437–10442

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Fujikake N, Ohno K, Higashiyama H, Popiel HA, Rahadian J, Yamaguchi M, Strittmatter WJ, Burke JR, Toda T (2003) Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum Mol Genet 12(11):1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T (2007) A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 14(4):332–340

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi:10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  • Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102(19):6990–6995. doi:10.1073/pnas.0500466102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nygaard HB (2013) Current and emerging therapies for Alzheimer’s disease. Clin Ther 35(10):1480–1489. doi:10.1016/j.clinthera.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • O’Leary JC 3rd, Li Q, Marinec P, Blair LJ, Congdon EE, Johnson AG, Jinwal UK, Koren J 3rd, Jones JR, Kraft C, Peters M, Abisambra JF, Duff KE, Weeber EJ, Gestwicki JE, Dickey CA (2010) Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 5:45. doi:10.1186/1750-1326-5-45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41(1):27–33. doi:S0896627303008109 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Okamoto Y, Nagai Y, Fujikake N, Akiko Popiel H, Yoshioka T, Toda T, Inui T (2009) Surface plasmon resonance characterization of specific binding of polyglutamine aggregation inhibitors to the expanded polyglutamine stretch. Biochem Biophys Res Commun 378(3):634–639. doi:10.1016/j.bbrc.2008.11.094

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. J Neurochem 97(1):105–115. doi:10.1111/j.1471-4159.2006.03707.x

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 75(6):742–750. doi:10.1002/jnr.20025

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hirohata M, Yamada M (2008) α-Synuclein assembly as a therapeutic target of Parkinson’s disease and related disorders. Curr Pharm Des 14(30):3247–3266

    Article  CAS  PubMed  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  • Paulsen JS, Hayden M, Stout JC, Langbehn DR, Aylward E, Ross CA, Guttman M, Nance M, Kieburtz K, Oakes D, Shoulson I, Kayson E, Johnson S, Penziner E, Predict HDIotHSG (2006) Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol 63(6):883–890. doi:10.1001/archneur.63.6.883

    Article  PubMed  Google Scholar 

  • Paulsen JS, Long JD, Ross CA, Harrington DL, Erwin CJ, Williams JK, Westervelt HJ, Johnson HJ, Aylward EH, Zhang Y, Bockholt HJ, Barker RA, Investigators P-H, Coordinators of the Huntington Study G (2014) Prediction of manifest Huntington’s disease with clinical and imaging measures: a prospective observational study. Lancet Neurol 13(12):1193–1201. doi:10.1016/S1474-4422(14)70238-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Permanne B, Adessi C, Saborio GP, Fraga S, Frossard MJ, Van Dorpe J, Dewachter I, Banks WA, Van Leuven F, Soto C (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide. FASEB J 16(8):860–862. doi:10.1096/fj.01-0841fje

    CAS  PubMed  Google Scholar 

  • Pollitt SK, Pallos J, Shao J, Desai UA, Ma AA, Thompson LM, Marsh JL, Diamond MI (2003) A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40(4):685–694

    Article  CAS  PubMed  Google Scholar 

  • Popiel HA, Nagai Y, Fujikake N, Toda T (2007) Protein Transduction Domain-mediated Delivery of QBP1 Suppresses Polyglutamine-induced Neurodegeneration In Vivo. Mol Ther 15(2):303–309

    Article  CAS  PubMed  Google Scholar 

  • Popiel HA, Nagai Y, Fujikake N, Toda T (2009) Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice. Neurosci Lett 449(2):87–92. doi:10.1016/j.neulet.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  • Popiel HA, Takeuchi T, Burke JR, Strittmatter WJ, Toda T, Wada K, Nagai Y (2013) Inhibition of protein misfolding/aggregation using polyglutamine binding peptide QBP1 as a therapy for the polyglutamine diseases. Neurotherapeutics 10(3):440–446. doi:10.1007/s13311-013-0184-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 273(49):32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Ray SS, Nowak RJ, Brown RH Jr, Lansbury PT Jr (2005) Small-molecule-mediated stabilization of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants against unfolding and aggregation. Proc Natl Acad Sci U S A 102(10):3639–3644. doi:10.1073/pnas.0408277102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38):8807–8814. doi:10.1523/JNEUROSCI.1521-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Ringman JM, Frautschy SA, Teng E, Begum AN, Bardens J, Beigi M, Gylys KH, Badmaev V, Heath DD, Apostolova LG, Porter V, Vanek Z, Marshall GA, Hellemann G, Sugar C, Masterman DL, Montine TJ, Cummings JL, Cole GM (2012) Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther 4(5):43. doi:10.1186/alzrt146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754. doi:10.1126/science.1141736

    Article  CAS  PubMed  Google Scholar 

  • Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63(10):1459–1467. doi:10.1001/archneur.63.10.1459

    Article  PubMed  Google Scholar 

  • Ross CA, Poirier MA (2005) Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–898

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17(5):661–663. doi:10.1038/nn.3697

    Article  CAS  PubMed  Google Scholar 

  • Salloway S, Sperling R, Keren R, Porsteinsson AP, van Dyck CH, Tariot PN, Gilman S, Arnold D, Abushakra S, Hernandez C, Crans G, Liang E, Quinn G, Bairu M, Pastrak A, Cedarbaum JM, Investigators EA (2011) A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77(13):1253–1262. doi:10.1212/WNL.0b013e3182309fa5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR, Bapineuzumab, Clinical Trial I (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333. doi:10.1056/NEJMoa1304839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421(6921):373–379

    Article  CAS  PubMed  Google Scholar 

  • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15(1):95–105

    Article  CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177. doi:10.1038/22124

    Article  CAS  PubMed  Google Scholar 

  • Schiffer NW, Broadley SA, Hirschberger T, Tavan P, Kretzschmar HA, Giese A, Haass C, Hartl FU, Schmid B (2007) Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J Biol Chem 282(12):9195–9203

    Article  CAS  PubMed  Google Scholar 

  • Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011) Lest we forget you--methylene blue…. Neurobiol Aging 32(12):2325 e2327–2316. doi:10.1016/j.neurobiolaging.2010.12.012

    Article  CAS  Google Scholar 

  • Schneeberger A, Mandler M, Mattner F, Schmidt W (2012) Vaccination for Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S11–S13. doi:10.1016/S1353-8020(11)70006-2

    Article  PubMed  Google Scholar 

  • Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, Agullo JM, Perez M, Avila J, Guardia-Laguarta C, Clarimon J, Lleo A, Gomez-Isla T (2009) A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35(3):359–367. doi:10.1016/j.nbd.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  • Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32(2):78–85. doi:10.1016/j.tibs.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89(4):629–639. doi:S0092-8674(00)80244-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Siddique YH, Jyoti S, Naz F (2014a) Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease. J Diet Suppl 11(2):121–130. doi:10.3109/19390211.2013.859207

    Article  CAS  PubMed  Google Scholar 

  • Siddique YH, Naz F, Jyoti S (2014b) Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease. BioMed Res Int 2014:606928. doi:10.1155/2014/606928

    PubMed Central  PubMed  Google Scholar 

  • Slepko N, Bhattacharyya AM, Jackson GR, Steffan JS, Marsh JL, Thompson LM, Wetzel R (2006) Normal-repeat-length polyglutamine peptides accelerate aggregation nucleation and cytotoxicity of expanded polyglutamine proteins. Proc Natl Acad Sci U S A 103(39):14367–14372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder-Keller A, McLear JA, Hathorn T, Messer A (2010) Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J Neuropathol Exp Neurol 69(10):1078–1085. doi:10.1097/NEN.0b013e3181f530ec

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sontag EM, Lotz GP, Agrawal N, Tran A, Aron R, Yang G, Necula M, Lau A, Finkbeiner S, Glabe C, Marsh JL, Muchowski PJ, Thompson LM (2012) Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models. J Neurosci 32(32):11109–11119. doi:10.1523/JNEUROSCI.0895-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem Biophys Res Commun 226(3):672–680. doi:10.1006/bbrc.1996.1413

    Article  CAS  PubMed  Google Scholar 

  • Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4(7):822–826

    Article  CAS  PubMed  Google Scholar 

  • Southwell AL, Khoshnan A, Dunn DE, Bugg CW, Lo DC, Patterson PH (2008) Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci 28(36):9013–9020. doi:10.1523/JNEUROSCI.2747-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Southwell AL, Ko J, Patterson PH (2009) Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 29(43):13589–13602. doi:10.1523/JNEUROSCI.4286-09.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95(13):7737–7741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672. doi:10.1126/science.1154584

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, Kennard C, Hicks SL, Fox NC, Scahill RI, Borowsky B, Tobin AJ, Rosas HD, Johnson H, Reilmann R, Landwehrmeyer B, Stout JC, Investigators T-H (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8(9):791–801. doi:10.1016/S1474-4422(09)70170-X

    Article  PubMed Central  PubMed  Google Scholar 

  • Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, Borowsky B, Landwehrmeyer B, Frost C, Johnson H, Craufurd D, Reilmann R, Stout JC, Langbehn DR, Investigators T-H (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12(7):637–649. doi:10.1016/S1474-4422(13)70088-7

    Article  PubMed  Google Scholar 

  • Takahashi Y, Okamoto Y, Popiel HA, Fujikake N, Toda T, Kinjo M, Nagai Y (2007) Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J Biol Chem 282(33):24039–24048

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17(3):345–356

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Popiel HA, Futaki S, Wada K, Nagai Y (2014) Peptide-based therapeutic approaches for treatment of the polyglutamine diseases. Curr Med Chem 21(23):2575–2582

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N, Morishima I, Akagi T, Hashikawa T (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10(2):148–154

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Popiel HA, Nagai Y, Toda T, Yoshimitsu Y, Ohno H, Oishi S, Fujii N (2009) Structure-activity relationship study on polyglutamine binding peptide QBP1. Bioorg Med Chem 17(3):1259–1263. doi:10.1016/j.bmc.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  • Ubhi K, Rockenstein E, Mante M, Patrick C, Adame A, Thukral M, Shults C, Masliah E (2008) Rifampicin reduces α-synuclein in a transgenic mouse model of multiple system atrophy. Neuroreport 19(13):1271–1276. doi:10.1097/WNR.0b013e32830b3661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Bebber F, Paquet D, Hruscha A, Schmid B, Haass C (2010) Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol Dis 39(3):265–271. doi:10.1016/j.nbd.2010.03.023

    Article  PubMed  CAS  Google Scholar 

  • van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci U S A 107(31):13888–13893. doi:10.1073/pnas.1009038107

    Article  PubMed Central  PubMed  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741. doi:7936 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Sharma A, Naidu S, Bhadra AK, Kukreti R, Taneja V (2012) Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex. PLoS One 7(8), e42923. doi:10.1371/journal.pone.0042923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH, Li XJ (2008) Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 181(5):803–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang N, Lu XH, Sandoval SV, Yang XW (2013) An independent study of the preclinical efficacy of C2-8 in the R6/2 transgenic mouse model of Huntington’s disease. J Huntingtons Dis 2(4):443–451. doi:10.3233/JHD-130074

    PubMed Central  PubMed  Google Scholar 

  • Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM, Graf A (2012) Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604. doi:10.1016/S1474-4422(12)70140-0

    Article  CAS  PubMed  Google Scholar 

  • Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 93(20):11213–11218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wischik CM, Harrington CR, Storey JM (2014) Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 88(4):529–539. doi:10.1016/j.bcp.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  • Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, Messer A (2005) Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A 102(32):11563–11568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood NI, Pallier PN, Wanderer J, Morton AJ (2007) Systemic administration of Congo red does not improve motor or cognitive function in R6/2 mice. Neurobiol Dis 25(2):342–353

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Nonaka T, Arai T, Kametani F, Buchman VL, Ninkina N, Bachurin SO, Akiyama H, Goedert M, Hasegawa M (2009) Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett 583(14):2419–2424. doi:10.1016/j.febslet.2009.06.042

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7):5892–5901. doi:10.1074/jbc.M404751200

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M, Washington SL, Maxwell MM, Marsh JL, Thompson LM, Wanker EE, Young AB, Housman DE, Bates GP, Sherman MY, Kazantsev AG (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 102(3):892–897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 279(26):26846–26857. doi:10.1074/jbc.M403129200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. H. Akiko Popiel for critical reading of the manuscript, and lab members for their helpful discussions. This work was supported in part by Grants-in-Aid for Scientific Research on Innovative Areas (Synapse and Neurocircuit Pathology to Y.N.) and Strategic Research Program for Brain Sciences (Integrated research on neuropsychiatric disorders to Y.N.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; by Grants-in-Aid for Scientific Research (B) and Challenging Exploratory Research to Y.N., and for Young Scientists (B) to E.N.M. from the Japan Society for the Promotion of Science, Japan; by Health Labour Sciences Research Grants for Research on Development of New Drugs and Research on Measures for Intractable Diseases to Y.N. from the Ministry of Health, Labour and Welfare, Japan; and by a grant from Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency to Y.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nagai, Y., Minakawa, E.N. (2015). Drug Development for Neurodegenerative Diseases. In: Wada, K. (eds) Neurodegenerative Disorders as Systemic Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54541-5_9

Download citation

Publish with us

Policies and ethics