Skip to main content

Significance of Mechanism-Oriented Research Toward Neuronal Protection Therapy Against Neurodegenerative Disorders ~ ZNRF1 E3 Ubiquitin Ligase as a Critical Mediator for Wallerian Degeneration and Neuronal Apoptosis

  • Chapter
Book cover Neurodegenerative Disorders as Systemic Diseases

Abstract

Therapeutic strategies for neurological disorders are now spreading in many directions. Previously, the removal of regeneration-inhibitory environments in the brain, together with the introduction of regeneration-promotive characteristics of the peripheral nerves has been explored. More recently, the effect of transplantation of stem cell-derived cells on traumatic injury and neurodegenerative disorders has been examined. Among various approaches aimed at a recovery from neurodegeneration, neuronal protection based on the understanding of degeneration mechanisms is an attractive alternative, especially for neurodegenerative disorders.

Axon degeneration is a hallmark of many neurological disorders, including neuropathies and neurodegenerative diseases. Previous studies have shown that subcellular signaling which promotes axonal degeneration is independent from the typical cell death signal. Whereas, axonal protection mechanism, as shown in a naturally occurring mutant strain wallerian degeneration slow (wlds) mice, can save both axons and cell bodies from some types of insults, but the existence of common regulatory mechanism(s) between Wallerian degeneration and neuronal apoptosis remains to be fully elucidated. In this chapter, we introduce a general overview of both well-established and newly discovered pathways that control the progression of Wallerian degeneration, and we also describe how E3 ubiquitin ligase zinc and ring finger 1 (ZNRF1) functions as a critical mediator for neurodegenerative pathways, Wallerian degeneration and neuronal apoptosis, by translating oxidative stress into subcellular signaling in neurons. Our results presented here, suggest that the pathophysiological significance of ZNRF1-mediated signaling in the regulation of both Wallerian degeneration and neuronal apoptosis is a potential therapeutic avenue against neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguayo AJ, David S, Bray GM (1981) Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J Exp Biol 95:231–240

    CAS  PubMed  Google Scholar 

  • Araki T, Milbrandt J (2003) ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci 23:9385–9394

    CAS  PubMed  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Araujo IM, Carvalho CM (2005) Role of nitric oxide and calpain activation in neuronal death and survival. Curr Drug Targets CNS Neurol Disord 4:319–324

    Article  CAS  PubMed  Google Scholar 

  • Babetto E, Beirowski B, Janeckova L, Brown R, Gilley J, Thomson D, Ribchester RR, Coleman MP (2010) Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J Neurosci 30:13291–13304

    Article  CAS  PubMed  Google Scholar 

  • Babetto E, Beirowski B, Russler EV, Milbrandt J, DiAntonio A (2013) The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep 3:1422–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Lau C, Dahlmann M, Ziegler M (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280:36334–36341

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Miller BR, Sanes JR, DiAntonio A (2007) The requirement for Phr1 in CNS axon tract formation reveals the corticostriatal boundary as a choice point for cortical axons. Genes Dev 21:2593–2606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brichta L, Greengard P, Flajolet M (2013) Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci 36:543–554

    Article  CAS  PubMed  Google Scholar 

  • Brosius Lutz A, Barres BA (2014) Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 28:7–17

    Article  CAS  PubMed  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke J Cereb Circul 40:e331–e339

    Article  Google Scholar 

  • Camins A, Verdaguer E, Folch J, Pallas M (2006) Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev 12:135–148

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  Google Scholar 

  • Chen CY, Lin CW, Chang CY, Jiang ST, Hsueh YP (2011) Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J Cell Biol 193:769–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng HC, Burke RE (2010) The Wld(S) mutation delays anterograde, but not retrograde, axonal degeneration of the dopaminergic nigro-striatal pathway in vivo. J Neurochem 113:683–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng HC, Kim SR, Oo TF, Kareva T, Yarygina O, Rzhetskaya M, Wang C, During M, Talloczy Z, Tanaka K, Komatsu M, Kobayashi K, Okano H, Kholodilov N, Burke RE (2011) Akt suppresses retrograde degeneration of dopaminergic axons by inhibition of macroautophagy. J Neurosci 31:2125–2135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chuang CF, Bargmann CI (2005) A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev 19:270–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J, Gunn-Moore F, Verkhratsky A, Oddo S, LaFerla F, Giese KP, Dineley KT, Duff K, Richardson JC, Yan SD, Hanger DP, Allan SM, Sutherland C (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103:1132–1144

    Article  CAS  PubMed  Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  PubMed  Google Scholar 

  • Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267

    Article  CAS  PubMed  Google Scholar 

  • Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, Lyon MF, Perry VH (1998) An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci U S A 95:9985–9990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conforti L, Tarlton A, Mack TG, Mi W, Buckmaster EA, Wagner D, Perry VH, Coleman MP (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc Natl Acad Sci U S A 97:11377–11382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15:394–409

    Article  CAS  PubMed  Google Scholar 

  • Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, Grimm E, Callaghan SM, Slack RS, Melloni E, Przedborski S, Robertson GS, Anisman H, Merali Z, Park DS (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 23:4081–4091

    CAS  PubMed  Google Scholar 

  • D’Orsi B, Bonner H, Tuffy LP, Dussmann H, Woods I, Courtney MJ, Ward MW, Prehn JH (2012) Calpains are downstream effectors of bax-dependent excitotoxic apoptosis. J Neurosci 32:1847–1858

    Article  PubMed  Google Scholar 

  • Fang Y, Bonini NM (2012) Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol 28:575–597

    Article  CAS  PubMed  Google Scholar 

  • Ferri A, Sanes JR, Coleman MP, Cunningham JM, Kato AC (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr Biol 13:669–673

    Article  CAS  PubMed  Google Scholar 

  • Finn JT, Weil M, Archer F, Siman R, Srinivasan A, Raff MC (2000) Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J Neurosci 20:1333–1341

    CAS  PubMed  Google Scholar 

  • Fischer LR, Culver DG, Davis AA, Tennant P, Wang M, Coleman M, Asress S, Adalbert R, Alexander GM, Glass JD (2005) The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol Dis 19:293–300

    Article  CAS  PubMed  Google Scholar 

  • Gallagher E, Gao M, Liu YC, Karin M (2006) Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci U S A 103:1717–1722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15:6445–6452

    CAS  PubMed  Google Scholar 

  • Gerdts J, Sasaki Y, Vohra B, Marasa J, Milbrandt J (2011) Image-based screening identifies novel roles for IkappaB kinase and glycogen synthase kinase 3 in axonal degeneration. J Biol Chem 286:28011–28018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gillingwater TH, Haley JE, Ribchester RR, Horsburgh K (2004) Neuroprotection after transient global cerebral ischemia in Wld(s) mutant mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 24:62–66

    Article  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  • Grant RJ, Sellings LH, Crocker SJ, Melloni E, Park DS, Clarke PB (2009) Effects of calpain inhibition on dopaminergic markers and motor function following intrastriatal 6-hydroxydopamine administration in rats. Neuroscience 158:558–569

    Article  CAS  PubMed  Google Scholar 

  • Grunblatt E, Mandel S, Youdim MB (2000) Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann N Y Acad Sci 899:262–273

    Article  CAS  PubMed  Google Scholar 

  • Haase G, Pettmann B, Raoul C, Henderson CE (2008) Signaling by death receptors in the nervous system. Curr Opin Neurobiol 18:284–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasbani DM, O’Malley KL (2006) Wld(S) mice are protected against the Parkinsonian mimetic MPTP. Exp Neurol 202:93–99

    Article  CAS  PubMed  Google Scholar 

  • Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DD, Luo L (2006) Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50:883–895

    Article  CAS  PubMed  Google Scholar 

  • Hou ST, Jiang SX, Aylsworth A, Ferguson G, Slinn J, Hu H, Leung T, Kappler J, Kaibuchi K (2009) CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. J Neurochem 111:870–881

    Article  CAS  PubMed  Google Scholar 

  • Hoxhaj G, Najafov A, Toth R, Campbell DG, Prescott AR, MacKintosh C (2012) ZNRF2 is released from membranes by growth factors, and together with ZNRF1, regulates the Na+/K+ATPase. J Cell Sci 125:4662–4675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikegami K, Kato S, Koike T (2004) N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) suppresses neuritic degeneration caused by different experimental paradigms including in vitro Wallerian degeneration. Brain Res 1030:81–93

    Article  CAS  PubMed  Google Scholar 

  • Kariya S, Mauricio R, Dai Y, Monani UR (2009) The neuroprotective factor Wld(s) fails to mitigate distal axonal and neuromuscular junction (NMJ) defects in mouse models of spinal muscular atrophy. Neurosci Lett 449:246–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C, Iadecola C, Nathan C, Ding A (2007) MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204:2063–2074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewcock JW, Genoud N, Lettieri K, Pfaff SL (2007) The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 56:604–620

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Liu HY, Chen CY, Hsueh YP (2014) Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains. Innate Immun 20:161–172

    Article  PubMed  Google Scholar 

  • Liu X, Van Vleet T, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44:349–370

    Article  CAS  PubMed  Google Scholar 

  • Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Meyer zu Horste G, Miesbach TA, Muller JI, Fledrich R, Stassart RM, Kieseier BC, Coleman MP, Sereda MW (2011) The Wlds transgene reduces axon loss in a Charcot-Marie-Tooth disease 1A rat model and nicotinamide delays post-traumatic axonal degeneration. Neurobiol Dis 42:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mi W, Beirowski B, Gillingwater TH, Adalbert R, Wagner D, Grumme D, Osaka H, Conforti L, Arnhold S, Addicks K, Wada K, Ribchester RR, Coleman MP (2005) The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain 128:405–416

    Article  PubMed  Google Scholar 

  • Neukomm LJ, Freeman MR (2014) Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24:515–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura K, Takahashi J (2013) Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biol Pharm Bull 36:171–175

    Article  CAS  PubMed  Google Scholar 

  • Nix P, Hisamoto N, Matsumoto K, Bastiani M (2011) Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc Natl Acad Sci U S A 108:10738–10743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osterloh JM et al (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337:481–484

    Article  CAS  PubMed  Google Scholar 

  • Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296:868–871

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Mohan PS, Peterhoff CM, Yang DS, Schmidt SD, Stavrides PH, Campbell J, Chen Y, Jiang Y, Paskevich PA, Cataldo AM, Haroutunian V, Nixon RA (2008) Marked calpastatin (CAST) depletion in Alzheimer’s disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. J Neurosci 28:12241–12254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rose FF Jr, Meehan PW, Coady TH, Garcia VB, Garcia ML, Lorson CL (2008) The Wallerian degeneration slow (Wld(s)) gene does not attenuate disease in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 375:119–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross CA, Akimov S (2014) Human induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 2014 May 13. pii: ddu204. [Epub ahead of print]

    Google Scholar 

  • Ryan KA, Pimplikar SW (2005) Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J Cell Biol 171:327–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitoh F, Araki T (2010) Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation. J Neurosci 30:1204–1212

    Article  CAS  PubMed  Google Scholar 

  • Sajadi A, Schneider BL, Aebischer P (2004) Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14:326–330

    Article  CAS  PubMed  Google Scholar 

  • Samsam M, Mi W, Wessig C, Zielasek J, Toyka KV, Coleman MP, Martini R (2003) The Wlds mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy. J Neurosci 23:2833–2839

    CAS  PubMed  Google Scholar 

  • Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Araki T, Milbrandt J (2006) Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci 26:8484–8491

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Vohra BP, Baloh RH, Milbrandt J (2009a) Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J Neurosci 29:6526–6534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki Y, Vohra BP, Lund FE, Milbrandt J (2009b) Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci 29:5525–5535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saxena S, Caroni P (2007) Mechanisms of axon degeneration: from development to disease. Prog Neurobiol 83:174–191

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AM, Hadwiger GD, Nonet ML (2000) rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron 26:345–356

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hyrc KL, Goldberg MP (2013) Maintaining energy homeostasis is an essential component of Wld(S)-mediated axon protection. Neurobiol Dis 59:69–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takano J, Tomioka M, Tsubuki S, Higuchi M, Iwata N, Itohara S, Maki M, Saido TC (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem 280:16175–16184

    Article  CAS  PubMed  Google Scholar 

  • Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  CAS  PubMed  Google Scholar 

  • Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, Okano H (2011) Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8:668–676

    Article  PubMed Central  PubMed  Google Scholar 

  • Ueda H, Fujita R (2004) Cell death mode switch from necrosis to apoptosis in brain. Biol Pharm Bull 27:950–955

    Article  CAS  PubMed  Google Scholar 

  • Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA (2013) XIAP regulates caspase activity in degenerating axons. Cell Rep 4:751–763

    Article  CAS  PubMed  Google Scholar 

  • Vande Velde C, Garcia ML, Yin X, Trapp BD, Cleveland DW (2004) The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med 5:193–203

    Article  CAS  PubMed  Google Scholar 

  • Vosler PS, Gao Y, Brennan CS, Yanagiya A, Gan Y, Cao G, Zhang F, Morley SJ, Sonenberg N, Bennett MV, Chen J (2011) Ischemia-induced calpain activation causes eukaryotic (translation) initiation factor 4G1 (eIF4GI) degradation, protein synthesis inhibition, and neuronal death. Proc Natl Acad Sci U S A 108:18102–18107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakatsuki S, Saitoh F, Araki T (2011) ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 13:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Waller A (1851) Experiments on the section of the glosso-pharnyngeal and hypoglossal nerves of the frog, and observations of the alterlations produced thereby in the structures of their primitive fibres. Edinburgh Med Surg J 76:369–376

    Google Scholar 

  • Wang MS, Davis AA, Culver DG, Glass JD (2002) WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann Neurol 52:442–447

    Article  PubMed  Google Scholar 

  • Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170:349–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitmore AV, Lindsten T, Raff MC, Thompson CB (2003) The proapoptotic proteins Bax and Bak are not involved in Wallerian degeneration. Cell Death Differ 10:260–261

    Article  CAS  PubMed  Google Scholar 

  • Williamson R, van Aalten L, Mann DM, Platt B, Plattner F, Bedford L, Mayer J, Howlett D, Usardi A, Sutherland C, Cole AR (2011) CRMP2 hyperphosphorylation is characteristic of Alzheimer’s disease and not a feature common to other neurodegenerative diseases. J Alzheimers Dis JAD 27:615–625

    CAS  PubMed  Google Scholar 

  • Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA (2010) Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191:211–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA (2012) The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10:e1001440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yahata N, Yuasa S, Araki T (2009) Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J Neurosci 29:6276–6284

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M (2013) Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80:1175–1189

    Article  CAS  PubMed  Google Scholar 

  • Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z (2003) Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39:217–225

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Zhu SS, Ren Y, Zhang M, Cao JQ, Yang Q, Li XY, Bai H, Jiang L, Jiang Q, He ZG, Chen Q (2011) Wld(S) protects against peripheral neuropathy and retinopathy in an experimental model of diabetes in mice. Diabetologia 54:2440–2450

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Araki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Wakatsuki, S., Araki, T. (2015). Significance of Mechanism-Oriented Research Toward Neuronal Protection Therapy Against Neurodegenerative Disorders ~ ZNRF1 E3 Ubiquitin Ligase as a Critical Mediator for Wallerian Degeneration and Neuronal Apoptosis. In: Wada, K. (eds) Neurodegenerative Disorders as Systemic Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54541-5_8

Download citation

Publish with us

Policies and ethics