Skip to main content

The Optic Edge and Adhesive Property of an Intraocular Lens Influences Lens Epithelial Cell Migration Under the Optic

  • Chapter
  • First Online:
Cataract Surgery: Maximizing Outcomes Through Research
  • 842 Accesses

Abstract

Purpose: To reveal the factors which influence the inhibitory effect of intraocular lens (IOL) on migration of lens epithelial cells (LECs).

Methods: Porcine LECs were cultured in a cell culture chamber insert, containing a collagen membrane, with IOL optics fixed by the stainless weight. To examine the extent of blocking of LEC migration by the edges of the IOL optics, we measured and summed the angles at the center of the optic that subtended margin portions where LECs had not migrated. The ratio of the sum of these angles to the angle of the entire circumference (360°) was taken as a measure of blocking ability. To examine the LEC migration under IOL optic, the area into which LECs had migrated after removing the weight was measured. Adhesion between the collagen membrane and the IOL optic was measured directly with a tensiometer.

Results: The blocking ability was affected by the type of the IOL (P = 0.0001). The blocking abilities of acrylic and silicone IOL with sharp edge were significantly higher than that of acrylic IOL with rounded edge (P = 0.0015, P < 0.0001, respectively). There was no difference in the blocking ability between acrylic and silicone IOL with sharp edge (P = 0.2056). After weight removal, LECs migrated to various extents on the collagen membrane under IOL optic. The ratio of cell-migrated area (migration ratio) ranged from 3.1 ± 3.2 % for acrylic IOL to 17.1 ± 4.0 % for PMMA IOL. A significant difference in maximum tensions was evident between IOL optics (P = 0.0060). The migration ratio was negatively related to maximum tension (P = 0.0476).

Conclusion: These findings suggested that the blocking ability of IOL optic is dependent on the shape of the edge, but not on the optic material. However, LEC migration under IOL optic was affected by the optic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awasthi N, Guo S, Wagner BJ. Posterior capsular opacification: a problem reduced but not yet eradicated. Arch Ophthalmol. 2009;127(4):555–62.

    Article  PubMed  Google Scholar 

  2. Apple DJ, Solomon KD, Tetz MR, et al. Posterior capsule opacification. Surv Ophthalmol. 1992;37:73–116.

    Article  PubMed  CAS  Google Scholar 

  3. Nasisse MP, Dykstra MJ, Cobo LM. Lens capsule opacification in aphakic and pseudophakic eyes. Graefes Arch Clin Exp Ophthalmol. 1995;233:63–70.

    Article  PubMed  CAS  Google Scholar 

  4. Cobo LM, Ohsawa E, Chandler D, et al. Pathogenesis of capsular opacification after extracapsular cataract extraction: an animal model. Ophthalmology. 1984;91:857–63.

    Article  PubMed  CAS  Google Scholar 

  5. McDonnell PJ, Zarbin MA, Green WR. Posterior capsule opacification in pseudophakic eyes. Ophthalmology. 1983;90:1548–53.

    Article  PubMed  CAS  Google Scholar 

  6. Steinert RF, Puliafito CA, Kumar SR, et al. Cystoid macular edema, retinal detachment, and glaucoma after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol. 1991;112:373–80.

    PubMed  CAS  Google Scholar 

  7. Ranta P, Kivela T. Retinal detachment in pseudophakic eyes with and without Nd:YAG laser posterior capsulotomy. Ophthalmology. 1998;105:2127–33.

    Article  PubMed  CAS  Google Scholar 

  8. Kohnen T, Fabian E, Gerl R, et al. Optic edge design as long-term factor for posterior capsular opacification rates. Ophthalmology. 2008;115(8):1308–14. 1314. e1–3.

    Article  PubMed  Google Scholar 

  9. Maddula S, Werner L, Ness PJ, et al. Pathology of 157 human cadaver eyes with round-edged or modern square-edged silicone intraocular lenses: analyses of capsule bag opacification. J Cataract Refract Surg. 2011;37(4):740–8.

    Article  PubMed  Google Scholar 

  10. Nagata T, Watanabe I. Optic sharp edge or convexity: comparison of effects on posterior capsular opacification. Jpn J Ophthalmol. 1996;40:397–403.

    PubMed  CAS  Google Scholar 

  11. Nishi O, Nishi K. Preventing posterior capsule opacification by creating a discontinuous sharp bend in the capsule. J Cataract Refract Surg. 1999;25:521–6.

    Article  PubMed  CAS  Google Scholar 

  12. Nishi O, Nishi K, Sakanishi K. Inhibition of migrating lens epithelial cells at the capsular bend created by the rectangular optic edge of a posterior chamber intraocular lens. Ophthalmic Surg Lasers. 1998;29:587–94.

    PubMed  CAS  Google Scholar 

  13. Kurosaka D, Obasawa M, Kurosaka H, et al. Inhibition of lens epithelial cell migration by acrylic intraocular lens in vitro. Ophthalmic Res. 2002;34:29–37.

    Article  PubMed  CAS  Google Scholar 

  14. Prosdocimo G, Tassinari G, Sala M, et al. Posterior capsule opacification after phacoemulsification: silicone CeeOn Edge versus acrylate AcrySof intraocular lens. J Cataract Refract Surg. 2003;29:1551–5.

    Article  PubMed  Google Scholar 

  15. Buehl W, Menapace R, Sacu S, et al. Effect of a silicone intraocular lens with a sharp posterior optic edge on posterior capsule opacification. J Cataract Refract Surg. 2004;30:1661–7.

    Article  PubMed  Google Scholar 

  16. Auffarth GU, Golescu A, Becker KA, et al. Quantification of posterior capsule opacification with round and sharp edge intraocular lenses. Ophthalmology. 2003;110:772–80.

    Article  PubMed  Google Scholar 

  17. Wejde G, Kugelberg M, Zetterstrom C. Posterior capsule opacification: comparison of 3 intraocular lenses of different materials and design. J Cataract Refract Surg. 2003;29:1556–9.

    Article  PubMed  Google Scholar 

  18. Schauersberger J, Amon M, Kruger A, et al. Comparison of the biocompatibility of 2 foldable intraocular lenses with sharp optic edges. J Cataract Refract Surg. 2001;27:1579–85.

    Article  PubMed  CAS  Google Scholar 

  19. Kugelberg M, Wejde G, Jayaram H, Zetterström C. Two-year follow-up of posterior capsule opacification after implantation of a hydrophilic or hydrophobic acrylic intraocular lens. Acta Ophthalmol. 2008;86(5):533–6.

    Article  PubMed  Google Scholar 

  20. Johansson B. Clinical consequences of acrylic intraocular lens material and design: Nd:YAG-laser capsulotomy rates in 3 x 300 eyes 5 years after phacoemulsification. Br J Ophthalmol. 2010;94(4):450–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sundelin K, Friberg-Riad Y, Ostberg A, et al. Posterior capsule opacification with AcrySof and poly(methyl methacrylate) intraocular lenses. Comparative study with a 3-year follow-up. J Cataract Refract Surg. 2001;27:1586–90.

    Article  PubMed  CAS  Google Scholar 

  22. Beltrame G, Salvetat ML, Chizzolini M, et al. Posterior capsule opacification and Nd:YAG capsulotomy rates after implantation of silicone, hydrogel and soft acrylic intraocular lenses: a two-year follow-up study. Eur J Ophthalmol. 2002;12:388–94.

    PubMed  CAS  Google Scholar 

  23. Casprini F, Tosi GM, Quercioli PP, et al. Comparison of AcrySof MA30BA and Sensar AR40 acrylic intraocular lenses. J Cataract Refract Surg. 2002;28:1130–4.

    Article  PubMed  Google Scholar 

  24. Daynes T, Spencer TS, Doan K, et al. Three-year clinical comparison of 3-piece AcrySof and SI-40 silicone intraocular lenses. J Cataract Refract Surg. 2002;28:1124–9.

    Article  PubMed  Google Scholar 

  25. Ernest PH. Posterior capsule opacification and neodymium: YAG capsulotomy rates with AcrySof acrylic and PhacoFlex II silicone intraocular lenses. J Cataract Refract Surg. 2003;29:1546–50.

    Article  PubMed  Google Scholar 

  26. Mester U, Fabian E, Gerl R, et al. Posterior capsule opacification after implantation of CeeOn Edge 911A, PhacoFlex SI-40NB, and AcrySof MA60BM lenses: one-year results of an intraindividual comparison multicenter study. J Cataract Refract Surg. 2004;30:978–85.

    Article  PubMed  Google Scholar 

  27. Nishi O, Nishi K. Preventive effect of a second-generation silicone intraocular lens on posterior capsule opacification. J Cataract Refract Surg. 2002;28:1236–40.

    Article  PubMed  Google Scholar 

  28. Hayashi H, Hayashi K, Nakao F, et al. Quantitative comparison of posterior capsule opacification after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Arch Ophthalmol. 1998;116:1579–82.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashi K, Hayashi H, Nakao F, et al. Changes in posterior capsule opacification after poly(methyl methacrylate), silicone, and acrylic intraocular lens implantation. J Cataract Refract Surg. 2001;27:817–24.

    Article  PubMed  CAS  Google Scholar 

  30. Hollick EJ, Spalton DJ, Ursell PG, et al. The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology. 1999;106:49–54.

    Article  PubMed  CAS  Google Scholar 

  31. Nagata T, Minakata A, Watanabe I. Adhesiveness of AcrySof to a collagen film. J Cataract Refract Surg. 1998;24:367–70.

    Article  PubMed  CAS  Google Scholar 

  32. Oshika T, Nagata T, Ishii Y. Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study. Br J Ophthalmol. 1998;82:549–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Born CP, Ryan DK. Effect of intraocular lens optic design on posterior capsular opacification. J Cataract Refract Surg. 1990;16:188–92.

    Article  PubMed  CAS  Google Scholar 

  34. Sterling S, Wood TO. Effect of intraocular lens convexity on posterior capsule opacification. J Cataract Refract Surg. 1986;12:655–7.

    Article  PubMed  CAS  Google Scholar 

  35. Downing JE. Long-term discussion rate after placing posterior chamber lenses with the convex surface posterior. J Cataract Refract Surg. 1986;12:651–4.

    Article  PubMed  CAS  Google Scholar 

  36. Frezzotti R, Caporossi A. Pathogenesis of posterior capsular opacification. Part I. Epidemiological and clinico-statistical data. J Cataract Refract Surg. 1990;16:347–52.

    Article  PubMed  CAS  Google Scholar 

  37. Kurosaka D, Yoshino M, Kurosaka H, et al. Effect of posterior convexity of intraocular lenses on lens epithelial cell migration. Jpn J Ophthalmol. 2003;47:332–7.

    Article  PubMed  Google Scholar 

  38. Pärssinen O, Raty J, Vainikainen J, et al. Compression forces of haptics of freely rotating posterior chamber intraocular lenses. J Cataract Refract Surg. 1998;24:415–25.

    Article  PubMed  Google Scholar 

  39. Werner L, Müller M, Tetz M. Evaluating and defining the sharpness of intraocular lenses: microedge structure of commercially available square-edged hydrophobic lenses. J Cataract Refract Surg. 2008;34(2):310–7.

    Article  PubMed  Google Scholar 

  40. Nanavaty MA, Spalton DJ, Boyce J, et al. Edge profile of commercially available square-edged intraocular lenses. J Cataract Refract Surg. 2008;34(4):677–86.

    Article  PubMed  Google Scholar 

  41. Vock L, Crnej A, Findl O, et al. Posterior capsule opacification in silicone and hydrophobic acrylic intraocular lenses with sharp-edge optics six years after surgery. Am J Ophthalmol. 2009;147(4):683–90.

    Article  PubMed  Google Scholar 

  42. Kurosaka D, Kato K, Oshima T, et al. Extracellular matrixes influence alpha-smooth muscle actin expression in cultured porcine lens epithelial cells. Curr Eye Res. 1999;19:260–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daijiro Kurosaka M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kurosaka, D. (2014). The Optic Edge and Adhesive Property of an Intraocular Lens Influences Lens Epithelial Cell Migration Under the Optic. In: Bissen-Miyajima, H., Koch, D., Weikert, M. (eds) Cataract Surgery: Maximizing Outcomes Through Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54538-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54538-5_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54537-8

  • Online ISBN: 978-4-431-54538-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics