Skip to main content

Selective Stimulation of Aromatic Compound Degradation by the Indigenous Marine Bacterium Cycloclasticus for Bioremediation of Oil Spills in the Marine Environment

  • Chapter
  • First Online:
Book cover Biodegradative Bacteria

Abstract

S-2 EPS, an extracellular polysaccharide produced by Rhodococcus rhodochrous S-2, is a functional biopolymer that increases the organism’s organic solvent tolerance. We previously demonstrated that addition of S-2 EPS and minerals to oil-contaminated seawater enhanced the degradation of an aromatic fraction (AF) of Arabian light crude oil by Cycloclasticus, a polycyclic aromatic hydrocarbon (PAH)-degrading indigenous marine bacterium, and stimulated its growth in AF-contaminated seawater. Moreover, Cycloclasticus growth and PAH degradation were selectively activated by the association of S-2 EPS with Cycloclasticus cells. In this chapter, the effects of S-2 EPS on the growth and PAH degradation activity of Cycloclasticus in hydrocarbon-degrading marine bacterial consortia are summarized. S-2 EPS regulates the interaction between living bacteria and oils, and because it selectively stimulates degradation of aromatic compounds by the indigenous marine bacterium Cycloclasticus, S-2 EPS is useful for bioremediation of oil spills in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa T, Neilan BA, Couperwhite I, Urai M, Anzai H, Iwabuchi N, Nakajima M, Sunairi M (2005) Relationship between extracellular polysaccharide and benzene tolerance of Rhodococcus sp. 33. Actinomycetologica 19:1–6

    Article  Google Scholar 

  • Belsky I, Gutnick DL, Rosenberg E (1979) Emulsifier of arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett 101:175–178

    Article  PubMed  CAS  Google Scholar 

  • Bell KS, Philip JC, Aw DWJ, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    Google Scholar 

  • Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  PubMed  CAS  Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  PubMed  CAS  Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Ann Rev Microbiol. 46:193–218

    Article  CAS  Google Scholar 

  • Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of puget sound Cycloclasticus strains. Appl Environ Microbiol 64:4703–4710

    PubMed  CAS  Google Scholar 

  • Goodfellow M (1989) Nocardioform actinomycetes genus Rhodococcus. Williams and Wilkins, Baltimore

    Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  PubMed  CAS  Google Scholar 

  • Henson JM, Hayasaka SS (1982) Effects of the water-soluble fraction of microbiologically or physically altered crude petroleum on the heterotrophic activity of marine bacteria. Mar Environ Res 6:205–214

    Article  Google Scholar 

  • Iwabuchi N, Sunairi M, Nakajima M (1997) Cloning of a DNA fragment from Rhodococcus rhodochrous which suppresses its mucoidal morphology. Actinomycetologica 11:59–63

    Article  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66: 5073–5077

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Morisak H, Nkajima M (2003) Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus. Colloids Surf. B Biointerfaces 30:51–60

    Article  CAS  Google Scholar 

  • Iwabuchi N, Sharma PK, Sunairi M, Kishi E, Sugita K, van der Mei HC, Nakajima M, Busscher HJ (2009) Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. Environ Sci Technol 43:8290–8294

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  PubMed  CAS  Google Scholar 

  • Lai Q, Li W, Wang B, Yu Z, Shao Z (2012) Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J bacterial 194:6677

    Article  CAS  Google Scholar 

  • Leitch RA, Richards JC (1990) Structural analysis of the specific capsular polysaccharide of Rhodococcus equi serotype 1. Biochem Cell Biol 68:778–789

    Article  PubMed  CAS  Google Scholar 

  • Lindberg B (1990) Components of bacterial polysaccharides. Adv Carbohydr Chem Biochem 48:279–318

    Article  PubMed  CAS  Google Scholar 

  • Lozada M, Riva Mercadal JP, Guerrero LD, Di Marzio WD, Ferrero MA, Dionisi HM (2008) Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol 25:8–50

    Google Scholar 

  • Mackay D, MacAuliffe CD (1988) Fate of hydrocarbons discharged at sea. Chem Pollut 5:1–20

    Article  CAS  Google Scholar 

  • Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453

    Article  PubMed  CAS  Google Scholar 

  • Masoud H, Richards JC (1994) Structural elucidation of the specific capsular polysaccharide of Rhodococcus equi serotype 7. Carbohydr Res 252:223–233

    PubMed  CAS  Google Scholar 

  • Minnikin DE (1991) Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res Microbiol 142:423–427

    Article  PubMed  CAS  Google Scholar 

  • Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2010) Both Cycloclasticus sp. and Pseudomonas sp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71(1):137–147, Erratum in: FEMS Microbiol Ecol 71(3): 479 (Mar 2010)

    Article  PubMed  CAS  Google Scholar 

  • Payne JR, Phillips CR (1985) Photochemistry of petroleum in water. Environ Sci Technol 19:569–579

    Article  PubMed  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  PubMed  CAS  Google Scholar 

  • Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Senchenkova SN, Knirel YA, Likhosherstov LM, Shashkov AS, Shibaev VN, Starukhina LA, Deryabin VV (1995) Structure of simusan, a new acidic exopolysaccharide from Arthrobacter sp. Carbohydr Res 266:103–113

    Article  CAS  Google Scholar 

  • Severn WB, Richards JC (1990) Structural analysis of the specific capsular polysaccharide of Rhodococcus equi serotype 2. Carbohydr Res 206:311–332

    Article  PubMed  CAS  Google Scholar 

  • Severn WB, Richards JC (1992) The acidic specific capsular polysaccharide of Rhodococcus equi serotype 3. Structural elucidation and stereochemical analysis of the lactate ether and pyruvate acetal substituents. Can J Chem 70:2664–2676

    Article  CAS  Google Scholar 

  • Severn WB, Richards JC (1999) The structure of the specific capsular polysaccharide of Rhodococcus equi serotype 4. Carbohydr Res 320:209–222

    Article  PubMed  CAS  Google Scholar 

  • Sunairi M, Iwabuchi N, Yoshizawa Y, Murooka H, Morisaki H, Nakajima M (1997) Cell-surface hydrophobicity and scum formation of Rhodococcus rhodochrous strains with different colonial morphologies. J Appl Microbiol 82:204–210

    PubMed  CAS  Google Scholar 

  • Urai M, Anzai H, Iwabuchi N, Sunairi M, Nakajima M (2002) A novel moisture-absorbing extracellular polysaccharide from Rhodococcus rhodochrous SM-1. Actinomycetologica 16: 26–31

    Article  CAS  Google Scholar 

  • Urai M, Anzai H, Iwabuchi N, Sunairi M, Nakajima M (2004) A novel viscous extracellular polysaccharide containing fatty acids from Rhodococcus rhodochrous ATCC 53968. Actinomycetologica 18:15–17

    Article  CAS  Google Scholar 

  • Urai M, Aizawa T, Anzai H, Ogihara J, Iwabuchi N, Neilan B, Couperwhite I, Nakajima M, Sunairi M (2006a) Structural analysis of an extracellular polysaccharide produced by a benzene tolerant bacterium, Rhodococcus sp. 33. Carbohydr Res 341:616–623

    Article  PubMed  CAS  Google Scholar 

  • Urai M, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2006b) Structural analysis of an extracellular polysaccharide produced by Rhodococcus rhodochrous strain S-2. Carbohydr Res 341:766–775

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963

    Article  PubMed  CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  PubMed  CAS  Google Scholar 

  • Zaidi BR, Imam SH (1999) Factors affecting microbial degradation of polycyclic aromatic hydrocarbon phenanthrene in the Caribbean coastal water. Mar Pollut Bull 38:737–742

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Iwabuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Iwabuchi, N. (2014). Selective Stimulation of Aromatic Compound Degradation by the Indigenous Marine Bacterium Cycloclasticus for Bioremediation of Oil Spills in the Marine Environment. In: Nojiri, H., Tsuda, M., Fukuda, M., Kamagata, Y. (eds) Biodegradative Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54520-0_16

Download citation

Publish with us

Policies and ethics