Introduction: Bottom-Up Methodology for Integrating Synthetic Double Helix Molecules Via Self-Assembly Process

Part of the Springer Theses book series (Springer Theses)


In nature, small molecules hierarchically form ordered assemblies with various modes and properties and are integrated into macroscopic soft substances. For example, actin proteins form secondary structures such as α-helices and β-sheets and then fibrous higher assemblies, which further assemble to form muscles; tubulin proteins form dimers, which aggregate to form a protofilament and then a microtubule. Biological cells are vesicles that contain various vesicular organelles such as liposomes and nuclei. It is thus interesting to control the interactions between molecular complexes and to develop such hierarchical soft-assembly-forming systems using synthetic macromolecules, because such studies will lead to an understanding of natural phenomena and the development of new materials. For this purpose, I examined to develop a bottom-up methodology for integrating synthetic macromolecules via assembly formation using double-helix-forming chiral oligomers (Fig. 1.1).


Random Coil Double Helix Cotton Effect Assembly Formation Actin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berl V, Huc I, Khoury RG, Krische MJ, Lehn J-M (2000) Nature 407:720CrossRefGoogle Scholar
  2. 2.
    Furusho Y, Yashima E (2011) Macromol Rapid Commun 32:136CrossRefGoogle Scholar
  3. 3.
    Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Chem Rev 109:6102CrossRefGoogle Scholar
  4. 4.
    Haldar D, Schmuck C (2009) Chem Soc Rev 38:363CrossRefGoogle Scholar
  5. 5.
    Hecht S, Huc I (eds) (2007) Foldamers: structure, properties, and applications. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Gan Q, Shang J, Kauffmann B, Wang Y, Bie F, Jiang H (2012) Tetrahedron 23:4479CrossRefGoogle Scholar
  7. 7.
    Makiguchi W, Kobayashi S, Furusho Y, Yashima E (2013) Angew Chem Int Ed. doi: 10.1002/anie.201301005 Google Scholar
  8. 8.
    Yamada H, Wu Z-Q, Furusho Y, Yashima E (2012) J Am Chem Soc 134:9506CrossRefGoogle Scholar
  9. 9.
    Yamada H, Furusho Y, Yashima E (2012) J Am Chem Soc 134:7250CrossRefGoogle Scholar
  10. 10.
    Ito H, Ikeda M, Hasegawa T, Furusho Y, Yashima E (2011) J Am Chem Soc 133:3419CrossRefGoogle Scholar
  11. 11.
    Iida H, Shimoyama M, Furusho Y, Yashima E (2010) J Org Chem 75:417CrossRefGoogle Scholar
  12. 12.
    Yamada H, Furusho Y, Ito H, Yashima E (2010) Chem Commun 46:3487CrossRefGoogle Scholar
  13. 13.
    Wu Z-Q, Furusho Y, Yamada H, Yashima E (2010) Chem Commun 46:8962CrossRefGoogle Scholar
  14. 14.
    Mudraboyina BP, Wisner JA (2012) Chem Eur J 18:14157CrossRefGoogle Scholar
  15. 15.
    Wang H-B, Mudraboyina BP, Wisner JA (2012) Chem Eur J 18:1322CrossRefGoogle Scholar
  16. 16.
    Wang H-B, Mudraboyina BP, Li J, Wisner JA (2010) Chem Commun 46:7343CrossRefGoogle Scholar
  17. 17.
    Gan Q, Li F, Li G, Kauffmann B, Xiang J, Huc I, Jiang H (2010) Chem Commun 46:297CrossRefGoogle Scholar
  18. 18.
    Gan Q, Ferrand Y, Chandramouli N, Kauffmann B, Aube C, Dubreuil D, Huc I (2012) J Am Chem Soc 134:15656CrossRefGoogle Scholar
  19. 19.
    Ferrand Y, Gan Q, Kauffmann B, Jianf H, Huc I (2011) Angew Chem Int Ed 50:7572CrossRefGoogle Scholar
  20. 20.
    Baptiste B, Zhu J, Haldar D, Kauffmann B, Léger J-M, Huc I (2012) Chem Asian J 5:1364Google Scholar
  21. 21.
    Ikeda M, Tanaka Y, Hasegawa T, Furusho Y, Yashima E (2006) J Am Chem Soc 128:6806CrossRefGoogle Scholar
  22. 22.
    Maeda T, Furusho Y, Sakurai S-I, Kumaki J, Okoshi K, Yashima E (2008) J Am Chem Soc 130:7938CrossRefGoogle Scholar
  23. 23.
    Woolfson DN (2005) Adv Protein Chem 70:79CrossRefGoogle Scholar
  24. 24.
    Price JL, Horne S, Gellman SH (2010) J Am Chem Soc 132:12378CrossRefGoogle Scholar
  25. 25.
    Daniels DS, Petersson J, Qiu JX, Schepartz A (2007) J Am Chem Soc 129:1532CrossRefGoogle Scholar
  26. 26.
    Lee B-C, Zuckermann RN, Dill KA (2005) J Am Chem Soc 127:10999CrossRefGoogle Scholar
  27. 27.
    Cheng RP, DeGrado WF (2002) J Am Chem Soc 124:11564CrossRefGoogle Scholar
  28. 28.
    Petsko GA, Ringe D (2009) Protein structure and function. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Kojima S, Kuriki Y, Yoshida T, Yazaki K, Miura K (1997) Proc Japan Acad Ser B 73:7CrossRefGoogle Scholar
  30. 30.
    Maity S, Jana P, Maity SK, Haldar D (2011) Soft Matter 7:10174CrossRefGoogle Scholar
  31. 31.
    Sim S, Kim Y, Kim T, Lim S, Lee M (2012) J Am Chem Soc 134:20270CrossRefGoogle Scholar
  32. 32.
    Pomerantz WC, Yuwono VM, Drake R, Hartgerink JD, Abbott NL, Gellman SH (2011) J Am Chem Soc 133:13604CrossRefGoogle Scholar
  33. 33.
    Lim Y, Moon K-S, Lee M (2009) Angew Chem Int Ed 48:1601CrossRefGoogle Scholar
  34. 34.
    Cuccia LA, Lehn J-M, Homo J-C, Schmutz M (2000) Angew Chem Int Ed 39:233CrossRefGoogle Scholar
  35. 35.
    Yamaguchi M, Okubo H, Hirama M (1996) J Chem Soc Chem Commun 1772Google Scholar
  36. 36.
    Amemiya R, Yamaguchi M (2008) Org Biomol Chem 6:26CrossRefGoogle Scholar
  37. 37.
    Amemiya R, Yamaguchi M (2008) Chem Rec 8:116CrossRefGoogle Scholar
  38. 38.
    Kano K, Negi S, Kamo H, Kitae T, Yamaguchi M, Okubo H, Hirama M (1998) Chem Lett 27:151CrossRefGoogle Scholar
  39. 39.
    Feng F, Miyashita T, Okubo H, Yamaguchi M (1998) J Am Chem Soc 120:10166CrossRefGoogle Scholar
  40. 40.
    Okubo H, Yamaguchi M, Kabuto C (1998) J Org Chem 63:9500CrossRefGoogle Scholar
  41. 41.
    Kano K, Kamo H, Negi S, Kitae T, Takaoka R, Yamaguchi M, Okubo H, Hirama M (1999) J Chem Soc Perkin Trans 2:15Google Scholar
  42. 42.
    Okubo H, Feng F, Nakano D, Hirata T, Yamaguchi M, Miyashita T (1999) Tetrahedron 55:14855CrossRefGoogle Scholar
  43. 43.
    Okubo H, Yamaguchi M (2000) Heterocycles 52:863CrossRefGoogle Scholar
  44. 44.
    Okubo H, Nakano D, Yamaguchi M, Kabuto C (2000) Chem Lett 29:1316CrossRefGoogle Scholar
  45. 45.
    Okubo H, Nakano D, Anzai S, Yamaguchi M (2001) J Org Chem 66:557CrossRefGoogle Scholar
  46. 46.
    Okubo H, Yamaguchi M (2001) J Org Chem 66:824CrossRefGoogle Scholar
  47. 47.
    Nakamura K, Okubo H, Yamaguchi M (2001) Org Lett 3:1097CrossRefGoogle Scholar
  48. 48.
    Honzawa S, Okubo H, Anzai S, Yamaguchi M, Tsumoto K, Kumagai I (2002) Bioorg Med Chem 10:3213CrossRefGoogle Scholar
  49. 49.
    Honzawa S, Okubo H, Nakamura K, Anzai S, Yamaguchi M, Kabuto C (2002) Tetrahedron Assym 13:1043CrossRefGoogle Scholar
  50. 50.
    Homzawa S, Chiba S, Okubo H, Yamaguchi M (2002) Heterocycles 57:1091CrossRefGoogle Scholar
  51. 51.
    Nakano D, Yamaguchi M (2003) Tetrahedron Lett 44:4969CrossRefGoogle Scholar
  52. 52.
    Saiki Y, Sugiura H, Nakamura K, Yamaguchi M, Hoshi T, Anzai J (2003) J Am Chem Soc 125:9268CrossRefGoogle Scholar
  53. 53.
    Saiki Y, Nakamura K, Nigorikawa Y, Yamaguchi M (2003) Angew Chem Int Ed 42:5190CrossRefGoogle Scholar
  54. 54.
    Sugiura H, Nigorikawa Y, Saiki Y, Nakamura K, Yamaguchi M (2004) J Am Chem Soc 126:14858CrossRefGoogle Scholar
  55. 55.
    Sugiura H, Takahira Y, Yamaguchi M (2005) J Org Chem 70:5698CrossRefGoogle Scholar
  56. 56.
    Takahira Y, Sugiura H, Yamaguchi M (2006) J Org Chem 71:763CrossRefGoogle Scholar
  57. 57.
    Mizukami J, Sugiura H, Yamaguchi M, Mushiake K (2006) Bull Chem Soc Jpn 79:317CrossRefGoogle Scholar
  58. 58.
    Sugiura H, Sakai D, Otani H, Teranishi K, Takahira Y, Amemiya R, Yamaguchi M (2007) Chem Lett 36:72CrossRefGoogle Scholar
  59. 59.
    Sugiura H, Yamaguchi M (2007) Chem Lett 36:58CrossRefGoogle Scholar
  60. 60.
    Sugiura H, Amemiya R, Yamaguchi M (2008) Chem Asian J 3:244CrossRefGoogle Scholar
  61. 61.
    Sugiura H, Teranishi K, Amemiya R, Yamaguchi M (2008) Chem Lett 37:158CrossRefGoogle Scholar
  62. 62.
    Pearson RG (1989) J Org Chem 54:1423CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Tohoku UniversitySendaiJapan

Personalised recommendations