Skip to main content

The Fåhraeus–Lindqvist Effect on the Retinal Microcirculation

  • Chapter
  • First Online:
Microcirculation in Fractal Branching Networks
  • 837 Accesses

Abstract

To assess the influence of the Fåhraeus–Lindqvist effect on the microcirculation in the microvascular network of the human retina, a mathematical model was used to simulate the arteriovenous distributions of hemodynamic parameters within a dichotomously branching network. The distributions of vascular resistance and wall shear stress as a function of vessel diameter within the retinal microcirculatory network with the Fåhraeus–Lindqvist effect are lower than those without the Fåhraeus–Lindqvist effect. The efficiency of blood transport in the microcirculatory network is 44 % greater with the Fåhraeus–Lindqvist effect than without the Fåhraeus–Lindqvist effect. Thus, the Fåhraeus–Lindqvist effect induced by the non-Newtonian fluid behavior of blood with a red blood cell suspension is effective for reducing in the physical energy required for blood to flow through the microcirculatory network. The wall shear stress and the circumferential wall stress in response to changes in intravascular pressure may be interactively regulated to maintain their individual set points through alterations in the inner radius and wall thickness of vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amemiya T (2003) Retinal and choroidal vascular changes and systemic diseases in rats. Springer, Tokyo

    Book  Google Scholar 

  • Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1984) Circulation of the eye. In: Renkin EM, Michel CC, Geiger SR (eds) Handbook of physiology, part 2. The cardiovascular system, microcirculation. American Physiological Society, Bethesda, sect 2, vol 4, chap 22, pp 1001‒1034

    Google Scholar 

  • Chien S, Usami S, Skalak R (1984) Blood flow in small tubes. In: Renkin EM, Michel CC (eds) Handbook of physiology, part 1. The cardiovascular system, microcirculation. American Physiological Society, Bethesda, sect 2, vol 4, chap 6, pp 217‒249

    Google Scholar 

  • Davis MJ, Hill MA, Kuo L (2008) Local regulation of microvascular perfusion. In: Tuma RF, Durán WN, Ley K (eds) Handbook of physiology: microcirculation. Elsevier, New York, chap 6, pp 161‒284

    Google Scholar 

  • Ditzel J (1968) Functional microangiopathy in diabetes mellitus. Diabetes 17:388–397

    PubMed  CAS  Google Scholar 

  • Folkow B (1983) Structural autoregulation: the local adaptation of vascular beds to chronic changes in pressure. Ciba Found Symp 100:56–79

    PubMed  CAS  Google Scholar 

  • Frank O (1920) Die Elastizität der Blutgefäße. Z Biol 71:255–272

    Google Scholar 

  • Gore RW (1974) Pressure in cat mesentery arterioles and capillaries during changes in systemic arterial blood pressure. Circ Res 34:581–591

    Article  PubMed  CAS  Google Scholar 

  • Kassab GS (2008) Mechanical homeostasis of cardiovascular tissue. In: Artmann GM, Chien S (eds) Bioengineering in cell and tissue research. Springer, Berlin, pp 371–391

    Chapter  Google Scholar 

  • Leschke M, Vogt M, Motz W, Strauer BE (1990) Blood rheology as a contributing factor in reduced coronary reserve in systemic hypertension. Am J Cardiol 65:56G–59G

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane RG, Robb-Smith AHT (1961) Functions of the blood. Academic, New York

    Google Scholar 

  • Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207–214

    Article  PubMed  CAS  Google Scholar 

  • Razavian SM, Pino MD, Simon A, Levenson J (1992) Increase in erythrocyte disaggregation shear stress in hypertension. Hypertension 20:247–252

    Article  PubMed  CAS  Google Scholar 

  • Renkin EM (1984) Control of microcirculation and blood-tissue exchange. In: Renkin EM, Michel CC, Geiger SR (eds) Handbook of physiology, part 2. The cardiovascular system, microcirculation. American Physiological Society, Bethesda, sect 2, vol 4, chap 14, pp 627‒687

    Google Scholar 

  • Rodbard S (1975) Vascular caliber. Cardiology 60:4–49

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T, Nakajima T, Takahashi T, Kawahara K (2006) Changes in cardiovascular function on inhibition of apoptosis in left ventricular remodeling after myocardial infarction. Cardiovasc Pathol 15:130–138

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Snyder GK (1973) Erythrocyte evolution: the significance of the Fåhraeus–Lindqvist phenomenon. Respir Physiol 19:271–278

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Shibata M, Kamiya A (1997) Mechanism of macromolecule concentration in collecting lymphatics in rat mesentery. Microvasc Res 54:193–205

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Okada A, Saitoh T, Hayano J, Miyamoto Y (2000) Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol 81:233–239

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Ashikawa K, Okada A, Takeshima N (2003) Hypothesis: a role of cardiac receptor nerve afferent in reflex control of heart rate during light exercise in upright humans. Ther Res 24:1583–1593

    Google Scholar 

  • Takahashi T, Hayano J, Okada A, Saitoh T, Kamiya A (2005) Effects of the muscle pump and body posture on cardiovascular responses during recovery from cycle exercise. Eur J Appl Physiol 94:576–589

    Article  PubMed  Google Scholar 

  • Takahashi T, Saitoh T, Okada A, Matsuo T (2006) Differences in femoral artery blood velocity among active, inactive and passive recovery modes following knee extension and flexion exercise. Ther Res 27:1393–1403

    Google Scholar 

  • Takahashi T, Shibata M, Kamiya A (2008) The optimum model of capillary-tissue arrangement in the skeletal muscle for oxygen transport to tissue. In: ISOTT2008 abstract book. The 36th annual meeting of international society on oxygen transport to tissue. Japan Oxygen Society, p 5

    Google Scholar 

  • Takahashi T, Nagaoka T, Yanagida H, Saitoh T, Kamiya A, Hein T, Kuo L, Yoshida A (2009) A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J Biorheol 23:77–86

    Article  Google Scholar 

  • Takahashi T, Okada A, Saitoh T, Ikegami M, Yanagida H (2010) Theoretical analysis of oxygen consumption by vascular walls exposed to hemodynamic stress in the human retinal microvascular network. Trans Jpn Soc Med Biol Eng 48:482–493

    Google Scholar 

  • Takahashi T, Saitoh T, Jiang Y, Wang S, Okada A, Yanagida H (2011) Effects of changes in the apparent viscosity of blood with vessel size on retinal microcirculation: significance of the Fåhraeus–Lindqvist effect. Trans Jpn Soc Med Biol Eng 49:533–543

    Google Scholar 

  • Vicaut E (2003) Hypertension and the microcirculation. Arch Mal Cœur 96:893–903

    PubMed  CAS  Google Scholar 

  • Watanabe S, Matsuo T, Sorimachi M, Yanagida H, Takahashi T (2009) Comparison of blood flow velocity in the middle cerebral artery between men and women at rest and during exercise. Ther Res 30:537–544

    Google Scholar 

  • Whittaker SRF, Winton FR (1933) The apparent viscosity of blood flowing in the isolated hindlimb of the dog and its variation with corpuscular concentration. J Physiol 78:339–369

    PubMed  CAS  Google Scholar 

  • Wong TY, Klein R, Sharrett R, Duncan BB, Couper DJ, Klein BEK, Hubbard LD, Nieto FJ (2004) Retinal arteriolar diameter and risk for hypertension. Ann Intern Med 140:248–255

    Article  PubMed  Google Scholar 

  • Zamir M (1977) Shear forces and blood vessel radii in the cardiovascular system. J Gen Physiol 69:449–461

    Article  PubMed  CAS  Google Scholar 

  • Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology, microcirculation, part 1. The cardiovascular system. American Physiological Society, Bethesda, sect 2, vol 4, chap 7, pp 251‒307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takahashi, T. (2014). The Fåhraeus–Lindqvist Effect on the Retinal Microcirculation. In: Microcirculation in Fractal Branching Networks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54508-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54508-8_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54507-1

  • Online ISBN: 978-4-431-54508-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics