Skip to main content

Vascular Regeneration Therapies for Spinal Cord Injury

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord
  • 1652 Accesses

Abstract

As a novel approach for spinal cord regeneration, we focused on the close interaction between the nervous system and blood vessels described as “vascular niche.” In our studies, endothelial progenitor cells (EPCs) or cell populations containing EPCs were used for treating spinal cord injury (SCI) in anticipation of causing the formation of vascular niche. Here we introduce the outcomes of following studies: (1) kinetics of endogenous EPCs in SCI, (2) transplantation of Jagged1 deficit EPCs, and (3) transplantation of human CD133+ cells. Bone marrow transplantation (BMT) from Tie2/lacZ transgenic mice into wild-type mice with SCI showed the recruitment of endogenous EPCs from bone marrow into injured spinal cord and the participation of recruited EPCs in angiogenesis and astrogliosis following SCI. Transplantation of EPCs derived from Jagged1 knockout mice revealed the contribution of transplanted EPCs to the enhancement of astrogliosis through Jagged1-Notch signaling. Human cord blood CD133+ cells and ex vivo expanded CD133+ cells promoted functional recovery after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3(3):289–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3(3):279–288

    Article  CAS  PubMed  Google Scholar 

  3. Zacchigna S, Lambrechts D, Carmeliet P (2008) Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 9(3):169–181

    Article  CAS  PubMed  Google Scholar 

  4. Okano H, Sakaguchi M, Ohki K, Suzuki N, Sawamoto K (2007) Regeneration of the central nervous system using endogenous repair mechanisms. J Neurochem 102(5):1459–1465

    Article  CAS  PubMed  Google Scholar 

  5. Barnabe-Heider F, Frisen J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3(1):16–24

    Article  CAS  PubMed  Google Scholar 

  6. Ohori Y, Yamamoto S, Nagao M, Sugimori M, Yamamoto N, Nakamura K, Nakafuku M (2006) Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 26(46):11948–11960

    Article  CAS  PubMed  Google Scholar 

  7. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  8. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9):1231–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kamei N, Kwon SM, Kawamoto A, Ii M, Ishikawa M, Ochi M, Asahara T (2012) Contribution of bone marrow-derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury. J Neurosci Res 90(12):2281–2292

    Article  CAS  PubMed  Google Scholar 

  10. Masuda H, Alev C, Akimaru H, Ito R, Shizuno T, Kobori M, Horii M, Ishihara T, Isobe K, Isozaki M, Itoh J, Itoh Y, Okada Y, McIntyre BA, Kato S, Asahara T (2011) Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ Res 109(1):20–37

    Article  CAS  PubMed  Google Scholar 

  11. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675):1338–1340

    Article  CAS  PubMed  Google Scholar 

  12. Kamei N, Kwon SM, Ishikawa M, Ii M, Nakanishi K, Yamada K, Hozumi K, Kawamoto A, Ochi M, Asahara T (2012) Endothelial progenitor cells promote astrogliosis following spinal cord injury through jagged1-dependent notch signaling. J Neurotrauma 29(9):1758–1769

    Article  PubMed  Google Scholar 

  13. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659

    Article  PubMed  Google Scholar 

  14. Kamei N, Kwon SM, Alev C, Ishikawa M, Yokoyama A, Nakanishi K, Yamada K, Horii M, Nishimura H, Takaki S, Kawamoto A, Ii M, Akimaru H, Tanaka N, Nishikawa S, Ochi M, Asahara T (2010) Lnk deletion reinforces the function of bone marrow progenitors in promoting neovascularization and astrogliosis following spinal cord injury. Stem cells 28(2):365–375

    CAS  PubMed  Google Scholar 

  15. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12):5002–5012

    CAS  PubMed  Google Scholar 

  16. Masuda H, Iwasaki H, Kawamoto A, Akimaru H, Ishikawa M, Ii M, Shizuno T, Sato A, Ito R, Horii M, Ishida H, Kato S, Asahara T (2012) Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Stem Cells Transl Med 1(2):160–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kamei N, Kwon SM, Alev C, Nakanishi K, Yamada K, Masuda H, Ishikawa M, Kawamoto A, Ochi M, Asahara T (2013) Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. J Neurol Sci 328(1–2):41–50

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest  Naosuke Kamei declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naosuke Kamei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kamei, N. (2014). Vascular Regeneration Therapies for Spinal Cord Injury. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_24

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics