Skip to main content

Transplantation of Mesenchymal Stem Cells Derived from Bone Marrow in the Injured Spinal Cord

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord

Abstract

The present study was designed to investigate the effects of mesenchymal stem cells (MSC) transplantation with a special focus on their effect on macrophage activation after SCI. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels reductions in TNF-α and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1 or CD206-positive) and decreased numbers of classically activated macrophages (M1 phenotype: iNOS or CD16/32-positive). These changes were associated with functional locomotor recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparring. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2 and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himes BT, Neuhuber B, Coleman C et al (2006) Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20:278–296

    Article  PubMed  Google Scholar 

  2. Wu S, Suzuki Y, Ejiri Y (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351

    Article  CAS  PubMed  Google Scholar 

  3. Akiyama Y, Radtke C, Honmou O et al (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236

    Article  PubMed Central  PubMed  Google Scholar 

  4. Akiyama Y, Radtke C, Kocsis JD (2002) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22:6623–6630

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Zurita M, Vaquero J, Bonilla C et al (2008) Functional recovery of chronic paraplegic pigs after autologous transplantation of bone marrow stromal cells. Transplantation 86:845–85

    Article  PubMed  Google Scholar 

  6. Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    Article  CAS  PubMed  Google Scholar 

  7. Wright KT, Masri EL, Osman W et al (2011) Bone marrow for the treatment of spinal cord injury: mechanisms and clinical application. Stem Cells 29:169–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Neuhuber B, Timothy Himes B, Shumsky JS et al (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035:73–85

    Article  CAS  PubMed  Google Scholar 

  9. Abrams MB, Dominguez C, Pernold K et al (2009) Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci 27:307–321

    PubMed  Google Scholar 

  10. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  11. Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schwartz M (2010) "Tissue-repairing" blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav. Immun 24:1054–1057

    CAS  Google Scholar 

  13. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  14. Nakajima H, Uchida K, Guerrero AR et al (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29:1614–1625

    Article  PubMed  Google Scholar 

  15. Sasaki M, Radtke C, Tan AM et al (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29:14932–14941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen X, Li Y, Wang L et al (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279

    Article  PubMed  Google Scholar 

  17. Shen LH, Li Y, Chen J et al (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399

    Article  CAS  PubMed  Google Scholar 

  18. Onda T, Honmou O, Harada K et al (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28:329–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bai L, Lennon DP, Eaton V et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ohtaki H, Ylostalo JH, Foraker JE et al (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A 105:14638–14643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Crigler L, Robey RC, Asawachaicharn A (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  CAS  PubMed  Google Scholar 

  22. Zhukareva V, Obrocka M, Houle JD et al (2010) Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine 50:317–321

    Article  CAS  PubMed  Google Scholar 

  23. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yamaguchi S, Kuroda S, Kobayashi H et al (2006) The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)–a preliminary study using microarray analysis. Brain Res 1087:15–27

    Article  CAS  PubMed  Google Scholar 

  25. Mukaino M, Nakamura M, Yamada O et al (2010) Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Exp Neurol 224:403–414

    Article  CAS  PubMed  Google Scholar 

  26. Shechter R, London A, Varol C et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113

    Article  PubMed Central  PubMed  Google Scholar 

  27. Loke P, Nair MG, Parkinson J et al (2002) IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hofstetter CP, Schwarz EJ, Hess D et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99:2199–2204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Grants-in-Aid to HN, KU, and HB for General Scientific Research of the Ministry of Education, Science and Culture of Japan (grants numbers 21591895, 21791389, 22390287, and 23791631). This study was also supported by Grant of Japan Orthopaedics and Traumatology Foundation (No.218).

Conflict of Interest  All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nakajima, H. et al. (2014). Transplantation of Mesenchymal Stem Cells Derived from Bone Marrow in the Injured Spinal Cord. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_23

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics