Skip to main content

Transplantation of Neural Stem Cells with Valproate for Spinal Cord Injury

  • Chapter
  • First Online:

Abstract

The regenerative capacity of an injured spinal cord is limited, and once paralysis occurs, it is difficult to improve the situation. We have developed a treatment method called the HINT method (HDAC Inhibitor and Neural stem cell Transplantation) that improves hind limb motor functionality in mice with severe spinal cord injuries by using a combination of antiepileptic drugs and neural stem cells. This chapter will introduce you to the new neural damage reconstruction mechanism employed in the HINT method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Llinás RR (2003) The contribution of Santiago Ramón y Cajal to functional neuroscience. Nat Rev Neurosci 4:77–80

    Article  PubMed  Google Scholar 

  2. Oudega M, Vargas CG, Weber AB et al (1999) Long-term effects of methylprednisolone following transection of adult rat spinal cord. Eur J Neurosci 11:2453–2464

    Article  CAS  PubMed  Google Scholar 

  3. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    Article  CAS  PubMed  Google Scholar 

  4. Bregman BS, Kunkel-Bagden E, Schnell L et al (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378:498–501

    Article  CAS  PubMed  Google Scholar 

  5. Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102:14069–14074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Leist M, Ghezzi P, Grasso G et al (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  CAS  PubMed  Google Scholar 

  7. Setoguchi T, Nakashima K, Takizawa T et al (2004) Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp Neurol 189:33–44

    Article  CAS  PubMed  Google Scholar 

  8. Ogawa Y, Sawamoto K, Miyata T et al (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69:925–933

    Article  CAS  PubMed  Google Scholar 

  9. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970

    Article  CAS  PubMed  Google Scholar 

  10. Okada S, Ishii K, Yamane J et al (2005) In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 19:1839–1841

    CAS  PubMed  Google Scholar 

  11. Hofstetter CP, Holmström NA, Lilja JA et al (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8:346–353

    Article  CAS  PubMed  Google Scholar 

  12. Perrin FE, Boniface G, Serguera C et al (2010) Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury. PLoS One 5:e15914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hsieh J, Nakashima K, Kuwabara T et al (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659–16664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Abematsu M, Tsujimura K, Yamano M et al (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120:3255–3266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bonner JF, Connors TM, Silverman WF et al (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lu P, Wang Y, Graham L et al (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150(6):1264–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest  The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Abematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Abematsu, M., Nakashima, K. (2014). Transplantation of Neural Stem Cells with Valproate for Spinal Cord Injury. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_20

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics