Advertisement

Regulation of Cortical Circuit Formation

  • Fernanda M. Rodríguez-Tornos
  • Beatriz Cubelos
  • Marta Nieto
Chapter

Abstract

The complex functions of the mammalian neocortex depend on the formation of precise networks and subnetworks among its many neuron types during development. These networks are formed in a stereotyped manner that creates a reproducible human cortex and facilitates common human behavior. The accuracy and complexity of cortical circuitry predicts that the developmental mechanisms that direct each of these neurons to connect with its siblings must be precise. In recent years, remarkable advances have been made in our understanding of the several developmental mechanisms that direct cortical connectivity, but we still know only a fraction of the coordinated events and molecular elements involved. An additional difficulty is that the intricate connectivity and physiology of these circuits is far from being definitively untangled. Much of the knowledge comes from relatively simple animal models, such as rodents, ferrets, and cats. Relevant information is also derived from the study of human genetic conditions that affect intellectual capabilities. This chapter briefly describes the connectivity of excitatory neurons of the cerebral cortex, which integrate and transmit information among neocortex regions and to other regions of the brain. We will try to give an extended overview of the mechanisms that shape this connectivity during development, with special emphasis on implications in humans.

Keywords

Corpus Callosum Internal Capsule Medial Geniculate Nucleus Cortical Circuitry Callosal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alcamo EA, Chirivella L et al (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57(3):364–377PubMedGoogle Scholar
  2. Alfano C, Viola L et al (2011) COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression. Development 138(21):4685–4697PubMedGoogle Scholar
  3. Andrews W, Liapi A et al (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133(11):2243–2252PubMedGoogle Scholar
  4. Arion D, Unger T et al (2007) Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex. Eur J Neurosci 25(6):1843–1854PubMedGoogle Scholar
  5. Arlotta P, Molyneaux BJ et al (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221PubMedGoogle Scholar
  6. Armentano M, Filosa A et al (2006) COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 133(21):4151–4162PubMedGoogle Scholar
  7. Armentano M, Chou SJ et al (2007) COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas. Nat Neurosci 10(10):1277–1286PubMedGoogle Scholar
  8. Asprer JS, Lee B et al (2011) LMO4 functions as a co-activator of neurogenin 2 in the developing cortex. Development 138(13):2823–2832PubMedGoogle Scholar
  9. Bagnard D, Chounlamountri N et al (2001) Axonal surface molecules act in combination with semaphorin 3a during the establishment of corticothalamic projections. Cereb Cortex 11(3):278–285PubMedGoogle Scholar
  10. Bagri A, Marin O et al (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33(2):233–248PubMedGoogle Scholar
  11. Baranek C, Dittrich M et al (2012) Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons. Proc Natl Acad Sci U S A 109(9):3546–3551PubMedGoogle Scholar
  12. Bishop KM, Goudreau G et al (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288(5464):344–349PubMedGoogle Scholar
  13. Boda B, Dubos A et al (2010) Signaling mechanisms regulating synapse formation and function in mental retardation. Curr Opin Neurobiol 20(4):519–527PubMedGoogle Scholar
  14. Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19(2):231–234PubMedGoogle Scholar
  15. Britanova O, de Juan Romero C et al (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57(3):378–392PubMedGoogle Scholar
  16. Bulfone A, Smiga SM et al (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15(1):63–78PubMedGoogle Scholar
  17. Burgalossi A, Herfst L et al (2011) Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron 70(4):773–786PubMedGoogle Scholar
  18. Cang J, Kaneko M et al (2005) Ephrin-as guide the formation of functional maps in the visual cortex. Neuron 48(4):577–589PubMedGoogle Scholar
  19. Caviness VS Jr, Takahashi T et al (1996) Regulation of normal proliferation in the developing cerebrum potential actions of trophic factors. Exp Neurol 137(2):357–366PubMedGoogle Scholar
  20. Charrier C, Joshi K et al (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149(4):923–935PubMedGoogle Scholar
  21. Chen B, Schaevitz LR et al (2005) Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc Natl Acad Sci U S A 102(47):17184–17189PubMedGoogle Scholar
  22. Chen B, Wang SS et al (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci U S A 105(32):11382–11387PubMedGoogle Scholar
  23. Chen Y, Magnani D et al (2012) Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial-subpallial boundary in the embryonic forebrain. PLoS One 7(3):e33105PubMedGoogle Scholar
  24. Clowry G, Molnar Z et al (2010) Renewed focus on the developing human neocortex. J Anat 217(4):276–288PubMedGoogle Scholar
  25. Cubelos B, Sebastian-Serrano A et al (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66(4):523–535PubMedGoogle Scholar
  26. Darnell JC, Van Driesche SJ et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261PubMedGoogle Scholar
  27. De Rubeis S, Fernandez E et al (2012) Molecular and cellular aspects of mental retardation in the Fragile X syndrome: from gene mutation/s to spine dysmorphogenesis. Adv Exp Med Biol 970:517–551PubMedGoogle Scholar
  28. de Wit J, Hong W et al (2011) Role of leucine-rich repeat proteins in the development and function of neural circuits. Annu Rev Cell Dev Biol 27:697–729PubMedGoogle Scholar
  29. Edbauer D, Neilson JR et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384PubMedGoogle Scholar
  30. Faedo A, Tomassy GS et al (2008) COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 18(9):2117–2131PubMedGoogle Scholar
  31. Fame RM, MacDonald JL et al (2011) Development, specification, and diversity of callosal projection neurons. Trends Neurosci 34(1):41–50PubMedGoogle Scholar
  32. Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571PubMedGoogle Scholar
  33. Feldmeyer D, Brecht M et al (2013) Barrel cortex function. Prog Neurobiol 103:3–27PubMedGoogle Scholar
  34. Ferland RJ, Cherry TJ et al (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comp Neurol 460(2):266–279PubMedGoogle Scholar
  35. Fiore R, Khudayberdiev S et al (2009) Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28(6):697–710PubMedGoogle Scholar
  36. Flavell SW, Cowan CW et al (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311(5763):1008–1012PubMedGoogle Scholar
  37. Frantz GD, Bohner AP et al (1994) Regulation of the POU domain gene SCIP during cerebral cortical development. J Neurosci 14(2):472–485PubMedGoogle Scholar
  38. Garcez PP, Henrique NP et al (2007) Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection. Eur J Neurosci 25(5):1384–1394PubMedGoogle Scholar
  39. Grant E, Hoerder-Suabedissen A et al (2012) Development of the corticothalamic projections. Front Neurosci 6:53PubMedGoogle Scholar
  40. Guillemot F (2007) Cell fate specification in the mammalian telencephalon. Prog Neurobiol 83(1):37–52PubMedGoogle Scholar
  41. Hand R, Bortone D et al (2005) Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48(1):45–62PubMedGoogle Scholar
  42. Hankin MH, Schneider BF et al (1988) Death of the subcallosal glial sling is correlated with formation of the cavum septi pellucidi. J Comp Neurol 272(2):191–202PubMedGoogle Scholar
  43. Hansen DV, Lui JH et al (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464(7288):554–561PubMedGoogle Scholar
  44. Harwell CC, Parker PR et al (2012) Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation. Neuron 73(6):1116–1126PubMedGoogle Scholar
  45. Hatanaka Y, Matsumoto T et al (2009) Distinct roles of neuropilin 1 signaling for radial and tangential extension of callosal axons. J Comp Neurol 514(3):215–225PubMedGoogle Scholar
  46. Heins N, Malatesta P et al (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5(4):308–315PubMedGoogle Scholar
  47. Hevner RF, Shi L et al (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29(2):353–366PubMedGoogle Scholar
  48. Hevner RF, Miyashita-Lin E et al (2002) Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J Comp Neurol 447(1):8–17PubMedGoogle Scholar
  49. Hevner RF, Daza RA et al (2003) Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25(2–4):139–151PubMedGoogle Scholar
  50. Hill RS, Walsh CA (2005) Molecular insights into human brain evolution. Nature 437(7055):64–67PubMedGoogle Scholar
  51. Huang CY, Chu D et al (2012) Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol 520(16):3650–3672PubMedGoogle Scholar
  52. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMedGoogle Scholar
  53. Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568PubMedGoogle Scholar
  54. Huntley GW, Benson DL (1999) Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. J Comp Neurol 407(4):453–471PubMedGoogle Scholar
  55. Inan M, Crair MC (2007) Development of cortical maps: perspectives from the barrel cortex. Neuroscientist 13(1):49–61PubMedGoogle Scholar
  56. Innocenti GM (2011) Development and evolution: two determinants of cortical connectivity. Prog Brain Res 189:65–75PubMedGoogle Scholar
  57. Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965PubMedGoogle Scholar
  58. Jacobs EC, Campagnoni C et al (2007) Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse. Eur J Neurosci 25(1):17–30PubMedGoogle Scholar
  59. Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11(5):316–328PubMedGoogle Scholar
  60. Jones EG, Rakic P (2010) Radial columns in cortical architecture: it is the composition that counts. Cereb Cortex 20(10):2261–2264PubMedGoogle Scholar
  61. Joshi PS, Molyneaux BJ et al (2008) Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 60(2):258–272PubMedGoogle Scholar
  62. Keeble TR, Halford MM et al (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26(21):5840–5848PubMedGoogle Scholar
  63. Koester SE, O’Leary DD (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14(11 Pt 1):6608–6620PubMedGoogle Scholar
  64. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50(1):10–20PubMedGoogle Scholar
  65. Lai T, Jabaudon D et al (2008) SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57(2):232–247PubMedGoogle Scholar
  66. Leone DP, Srinivasan K et al (2008) The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18(1):28–35PubMedGoogle Scholar
  67. Lett RL, Wang W et al (2009) Semaphorin 5B is a novel inhibitory cue for corticofugal axons. Cereb Cortex 19(6):1408–1421PubMedGoogle Scholar
  68. Li L, Hutchins BI et al (2010) Wnt5a induces simultaneous cortical axon outgrowth and repulsive turning through distinct signaling mechanisms. Sci Signal 3(147):pt2PubMedGoogle Scholar
  69. Li Y, Lu H et al (2012) Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486(7401):118–121PubMedGoogle Scholar
  70. Lickiss T, Cheung AF et al (2012) Examining the relationship between early axon growth and transcription factor expression in the developing cerebral cortex. J Anat 220(3):201–211PubMedGoogle Scholar
  71. Lindwall C, Fothergill T et al (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17(1):3–14PubMedGoogle Scholar
  72. Lopez-Bendito G, Cautinat A et al (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125(1):127–142PubMedGoogle Scholar
  73. Lopez-Bendito G, Flames N et al (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27(13):3395–3407PubMedGoogle Scholar
  74. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366PubMedGoogle Scholar
  75. Malatesta P, Hack MA et al (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37(5):751–764PubMedGoogle Scholar
  76. Mallamaci A, Muzio L et al (2000) Area identity shifts in the early cerebral cortex of Emx2-/- mutant mice. Nat Neurosci 3(7):679–686PubMedGoogle Scholar
  77. Manzini MC, Walsh CA (2011) What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev 21(3):333–339PubMedGoogle Scholar
  78. McEvilly RJ, de Diaz MO et al (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295(5559):1528–1532PubMedGoogle Scholar
  79. McKenna WL, Betancourt J et al (2011) Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 31(2):549–564PubMedGoogle Scholar
  80. Mendes SW, Henkemeyer M et al (2006) Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain. J Neurosci 26(3):882–892PubMedGoogle Scholar
  81. Metin C, Deleglise D et al (1997) A role for netrin-1 in the guidance of cortical efferents. Development 124(24):5063–5074PubMedGoogle Scholar
  82. Mitchell BD, Macklis JD (2005) Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice. J Comp Neurol 482(1):17–32PubMedGoogle Scholar
  83. Mizuno H, Hirano T et al (2007) Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. J Neurosci 27(25):6760–6770PubMedGoogle Scholar
  84. Molnar Z (2011) Evolution of cerebral cortical development. Brain Behav Evol 78(1):94–107PubMedGoogle Scholar
  85. Molnar Z, Cordery P (1999) Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J Comp Neurol 413(1):1–25PubMedGoogle Scholar
  86. Molnar Z, Higashi S et al (2003) Choreography of early thalamocortical development. Cereb Cortex 13(6):661–669PubMedGoogle Scholar
  87. Molyneaux BJ, Arlotta P et al (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47(6):817–831PubMedGoogle Scholar
  88. Molyneaux BJ, Arlotta P et al (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437PubMedGoogle Scholar
  89. Mountcastle VB, Davies PW et al (1957) Response properties of neurons of cat’s somatic sensory cortex to peripheral stimuli. J Neurophysiol 20(4):374–407PubMedGoogle Scholar
  90. Napoli I, Mercaldo V et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134(6):1042–1054PubMedGoogle Scholar
  91. Nieto M, Monuki ES et al (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 479(2):168–180PubMedGoogle Scholar
  92. Niquille M, Garel S et al (2009) Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol 7(10):e1000230PubMedGoogle Scholar
  93. O’Leary DD, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10(6):991–1006PubMedGoogle Scholar
  94. O’Leary DD, Nakagawa Y (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 12(1):14–25PubMedGoogle Scholar
  95. O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18(1):90–100PubMedGoogle Scholar
  96. O’Leary DD, Chou SJ et al (2007) Area patterning of the mammalian cortex. Neuron 56(2):252–269PubMedGoogle Scholar
  97. Okada A, Charron F et al (2006) Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444(7117):369–373PubMedGoogle Scholar
  98. Pasterkamp RJ (2012) Getting neural circuits into shape with semaphorins. Nat Rev Neurosci 13(9):605–618PubMedGoogle Scholar
  99. Penzes P, Remmers C (2012) Kalirin signaling: implications for synaptic pathology. Mol Neurobiol 45(1):109–118PubMedGoogle Scholar
  100. Penzes P, Cahill ME et al (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293PubMedGoogle Scholar
  101. Pfeiffer BE, Zang T et al (2010) Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron 66(2):191–197PubMedGoogle Scholar
  102. Piper M, Plachez C et al (2009) Neuropilin 1-Sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum. Cereb Cortex 19(Suppl 1):i11–i21PubMedGoogle Scholar
  103. Polleux F, Giger RJ et al (1998) Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282(5395):1904–1906PubMedGoogle Scholar
  104. Polleux F, Morrow T et al (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404(6778):567–573PubMedGoogle Scholar
  105. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176PubMedGoogle Scholar
  106. Rash BG, Grove EA (2006) Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 16(1):25–34PubMedGoogle Scholar
  107. Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434(2):147–157PubMedGoogle Scholar
  108. Redmond L, Ghosh A (2005) Regulation of dendritic development by calcium signaling. Cell Calcium 37(5):411–416PubMedGoogle Scholar
  109. Redmond L, Kashani AH et al (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34(6):999–1010PubMedGoogle Scholar
  110. Ren T, Anderson A et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 288(2):191–204PubMedGoogle Scholar
  111. Rouaux C, Arlotta P (2010) Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 13(11):1345–1347PubMedGoogle Scholar
  112. Rubenstein JL (2011) Annual research review: development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 52(4):339–355PubMedGoogle Scholar
  113. Ruediger T, Zimmer G et al (2012) Integration of opposing semaphorin guidance cues in cortical axons. Cereb Cortex 23:604–614PubMedGoogle Scholar
  114. Sahara S, Kawakami Y et al (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2:10PubMedGoogle Scholar
  115. Sasayama D, Hiraishi A et al. (2012) Possible association of CUX1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenomics J. doi:10.1038/tpj.2012.18 (Epub ahead of print)Google Scholar
  116. Segal M (2001) New building blocks for the dendritic spine. Neuron 31(2):169–171PubMedGoogle Scholar
  117. Selzer ME (1990) Cajal on the cerebral cortex—an annotated translation of the complete writings, By Javier DeFelipe and Edward G. Jones New York, Oxford University Press, 1988 654 pp, illustrated. Ann Neurology 27(4):453–453Google Scholar
  118. Sestan N, Rakic P et al (2001) Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression. Curr Biol 11(1):39–43PubMedGoogle Scholar
  119. Shen K, Scheiffele P (2010) Genetics and cell biology of building specific synaptic connectivity. Annu Rev Neurosci 33:473–507PubMedGoogle Scholar
  120. Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21(8):2749–2758PubMedGoogle Scholar
  121. Shu T, Li Y et al (2003a) The glial sling is a migratory population of developing neurons. Development 130(13):2929–2937PubMedGoogle Scholar
  122. Shu T, Puche AC et al (2003b) Development of midline glial populations at the corticoseptal boundary. J Neurobiol 57(1):81–94PubMedGoogle Scholar
  123. Shu T, Sundaresan V et al (2003c) Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J Neurosci 23(22):8176–8184PubMedGoogle Scholar
  124. Silver J, Ogawa MY (1983) Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges. Science 220(4601):1067–1069PubMedGoogle Scholar
  125. Silver J, Edwards MA et al (1993) Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J Comp Neurol 328(3):415–436PubMedGoogle Scholar
  126. Srivastava DP, Woolfrey KM et al (2012) An autism-associated variant of Epac2 reveals a role for Ras/Epac2 signaling in controlling basal dendrite maintenance in mice. PLoS Biol 10(6):e1001350PubMedGoogle Scholar
  127. Sugitani Y, Nakai S et al (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16(14):1760–1765PubMedGoogle Scholar
  128. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16(1):95–101PubMedGoogle Scholar
  129. Takahashi T, Nowakowski RS et al (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16(19):6183–6196PubMedGoogle Scholar
  130. Tomassy GS, De Leonibus E et al (2010) Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc Natl Acad Sci U S A 107(8):3576–3581PubMedGoogle Scholar
  131. Torii M, Levitt P (2005) Dissociation of corticothalamic and thalamocortical axon targeting by an EphA7-mediated mechanism. Neuron 48(4):563–575PubMedGoogle Scholar
  132. Torii M, Hashimoto-Torii K et al (2009) Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature 461(7263):524–528PubMedGoogle Scholar
  133. Torii M, Hackett TA et al (2013) EphA signaling impacts development of topographic connectivity in auditory corticofugal systems. Cereb Cortex 23:775–785PubMedGoogle Scholar
  134. van Bokhoven H (2011) Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 45:81–104PubMedGoogle Scholar
  135. Voelker CC, Garin N et al (2004) Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex 14(11):1276–1286PubMedGoogle Scholar
  136. Weimann JM, Zhang YA et al (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24(4):819–831PubMedGoogle Scholar
  137. Yassin L, Benedetti BL et al (2010) An embedded subnetwork of highly active neurons in the neocortex. Neuron 68(6):1043–1050PubMedGoogle Scholar
  138. Yu YC, Bultje RS et al (2009) Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458(7237):501–504PubMedGoogle Scholar
  139. Yu YC, He S et al (2012) Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486(7401):113–117PubMedGoogle Scholar
  140. Zhang YQ, Bailey AM et al (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107(5):591–603PubMedGoogle Scholar
  141. Zimmer C, Tiveron MC et al (2004) Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex 14(12):1408–1420PubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Fernanda M. Rodríguez-Tornos
    • 1
  • Beatriz Cubelos
    • 2
  • Marta Nieto
    • 1
  1. 1.Centro Nacional de BiotecnologíaCSICMadridSpain
  2. 2.Centro de Biología Molecular ‘Severo Ochoa’Universidad Autónoma de MadridMadridSpain

Personalised recommendations