Regulatory Mechanisms Underlying the Neurogenesis-to-Gliogenesis Switch by Neural Stem Cells

  • Takuya Shimazaki


During development of the vertebrate central nervous system (CNS), neural stem cells (NSCs) first generate neurons, followed by glia. This sequential production of specific cell types is advantageous for the organism, since glia play pivotal roles in the maintenance and function of neurons and also, under some conditions, in the inhibition of axonal growth. The latter may be related to the conservation of the newly established neuronal circuitry. The temporal regulation of stem cell differentiation is captivating, given that the loss of stem cell plasticity is often part of the standard mammalian aging process. The reduced plasticity of adult stem cells, including NSCs, directly affects the capacity of the metazoan to regenerate lost or damaged neural tissue and seems to have occurred over the course of evolution. Indeed, the injured adult mammalian brain is scarcely capable of regeneration, not only due to the limited number of adult NSCs but also because of their low neurogenic capacity, except for in certain restricted CNS regions. By contrast, some lower vertebrates (e.g., red-spotted newts) show high regenerative capacity in the brain, with the efficient induction of neurogenesis after injury. Therefore, addressing the regulatory mechanisms underlying the neurogenesis-to-gliogenesis switch by NSCs during development is critical to understanding the restricted plasticity of the adult mammalian CNS. Accordingly, this chapter will review the recent progress in the field of NSC biology, especially regarding the temporal regulation of neurogenesis and gliogenesis.


Notch Signalling Ventricular Zone Bone Morphogenetic Protein Signalling Central Nervous System Development Astrocyte Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altmann CR, Brivanlou AH (2001) Neural patterning in the vertebrate embryo. Int Rev Cytol 203:447–482. doi: 10.1016/S0074-7696(01)03013-3 PubMedGoogle Scholar
  2. Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K (2009) Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells 27:2744–2752. doi: 10.1002/stem.176 PubMedGoogle Scholar
  3. Barnabe´-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, Miller FD (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265. doi: 10.1016/j.neuron.2005.08.037 PubMedGoogle Scholar
  4. Bayer SA, Altman J (1991) Neocortical development. Raven, New YorkGoogle Scholar
  5. Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA (2005) LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132:5503–5514. doi: 10.1242/dev.02166 PubMedGoogle Scholar
  6. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155. doi: 10.1016/j.cell.2011.05.024 PubMedGoogle Scholar
  7. Bultje RS, Castaneda-Castellanos DR, Jan LY, Jan YN, Kriegstein AR, Shi SH (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63:189–202. doi: 10.1016/j.neuron.2009.07.004 PubMedGoogle Scholar
  8. Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19:251–267. doi: 10.1016/S0896-6273(00)80937-X PubMedGoogle Scholar
  9. Cai L, Morrow EM, Cepko CL (2000) Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development 127:3021–3030PubMedGoogle Scholar
  10. Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45:41–53. doi: 10.1016/j.neuron.2004.12.028 PubMedGoogle Scholar
  11. Cebolla B, Vallejo M (2006) Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 97:1057–1070. doi: 10.1111/j.1471-4159.2006.03804.x PubMedGoogle Scholar
  12. Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS (2001) Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128:689–702PubMedGoogle Scholar
  13. Chandran S, Kato H, Gerreli D, Compston A, Svendsen CN, Allen ND (2003) FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130:6599–6609. doi:10. 1242/dev.00871PubMedGoogle Scholar
  14. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi: 10.1038/nn.2294 PubMedGoogle Scholar
  15. Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604. doi: 10.1016/S0092-8674(01)00245-8 PubMedGoogle Scholar
  16. Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11:176–187. doi: 10.1038/nrn2761 PubMedGoogle Scholar
  17. Costa MR, Wen G, Lepier A, Schroeder T, Götz M (2008) Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135:11–22. doi: 10.1242/dev.009951 PubMedGoogle Scholar
  18. Costa MR, Bucholz O, Schroeder T, Götz M (2009) Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb Cortex 19(Suppl 1):i135–i143. doi: 10.1093/cercor/bhp046 PubMedGoogle Scholar
  19. Cundiff P, Liu L, Wang Y, Zou J, Pan YW, Abel G, Duan X, Ming GL, Englund C, Hevner R, Xia Z (2009) ERK5 MAP kinase regulates neurogenin1 during cortical neurogenesis. PLoS One 4:e5204. doi: 10.1371/journal.pone.0005204 PubMedGoogle Scholar
  20. Delaunay D, Heydon K, Cumano A, Schwab MH, Thomas JL, Suter U, Nave KA, Zalc B, Spassky N (2008) Early neuronal and glial fate restriction of embryonic neural stem cells. J Neurosci 28:2551–2562. doi: 10.1523/JNEUROSCI.5497-07.2008 PubMedGoogle Scholar
  21. Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52:953–968. doi: 10.1016/j.neuron.2006.11.019 PubMedGoogle Scholar
  22. Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64:61–78. doi: 10.1016/j.neuron.2009.09.002 PubMedGoogle Scholar
  23. Doetsch F, Caille I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:1–20. doi: 10.1016/S0092-8674(00)80783-7 Google Scholar
  24. Doetsch F, Petreanu L, Caille I, JM G ́ı-V, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034. doi: 10.1016/S0896-6273(02)01133-9 PubMedGoogle Scholar
  25. Dong Z, Yang N, Yeo SY, Chitnis A, Guo S (2012) Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74:65–78. doi: 10.1016/j.neuron.2012.01.031 PubMedGoogle Scholar
  26. Drögemüller K, Helmuth U, Brunn A, Sakowicz-Burkiewicz M, Gutmann DH, Mueller W, Deckert M, Schlüter D (2008) Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J Immunol 181:2683–2693PubMedGoogle Scholar
  27. Erlandsson A, Enarsson M, Forsberg-Nilsson K (2001) Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci 21:3483–3491PubMedGoogle Scholar
  28. Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, Hattori D, Ge W, Shen Y, Wu H, ten Hoeve J, Shuai K, Sun YE (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356. doi: 10.1242/dev.01912 PubMedGoogle Scholar
  29. Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, Müller U (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337:746–749. doi: 10.1126/science.1223616 PubMedGoogle Scholar
  30. Gabay L, Lowell S, Rubin LL, Anderson DJ (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40:485–499. doi: 10.1016/S0896-6273(03)00637-8) PubMedGoogle Scholar
  31. Ge W, Martinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G, Sun YE (2002) Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 69:848–860. doi: 10.1002/jnr.10364 PubMedGoogle Scholar
  32. Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67:147–156. doi: 10.1016/j.brainresrev.2011.01.001 PubMedGoogle Scholar
  33. Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27:2032–2043. doi: 10.1002/stem.119 PubMedGoogle Scholar
  34. Grandbarbe L, Bouissac J, Rand M, Hrabe de Angelis M, Artavanis-Tsakonas S, Mohier E (2003) Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130:1391–1402. doi: 10.1242/dev.00374 PubMedGoogle Scholar
  35. Gregg C, Weiss S (2005) CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development 132:565–578. doi: 10.1242/dev.01592 PubMedGoogle Scholar
  36. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem-like cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100PubMedGoogle Scholar
  37. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606. doi: 10.1016/S0896-6273(00)80193-2 PubMedGoogle Scholar
  38. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189. doi: 10.1126/science.1065518 PubMedGoogle Scholar
  39. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci U S A 103:111–116. doi: 10.1073/pnas.0509939103 PubMedGoogle Scholar
  40. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666. doi: 10.1038/nrg3272 PubMedGoogle Scholar
  41. Hartline DK (2011) The evolutionary origins of glia. Glia 59:1215–1236. doi: 10.1002/glia.21149 PubMedGoogle Scholar
  42. He F, Weihong G, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, de Vellis J, Sun YE (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8:616–625. doi: 10.1038/nn1440 PubMedGoogle Scholar
  43. Hegedus B, Dasgupta B, Shin JE, Emnett RJ, Hart-Mahon EK, Elghazi L, Bernal-Mizrachi E, Gutmann DH (2007) Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1:443–457. doi: 10.1016/j.stem.2007.07.008 PubMedGoogle Scholar
  44. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20. doi: 10.1042/BJ20030407 PubMedGoogle Scholar
  45. Hermanson O, Jepsen K, Rosenfeld MG (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419:934–939. doi: 10.1038/nature01156 PubMedGoogle Scholar
  46. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131:2791–2801. doi: 10.1242/dev.01165 PubMedGoogle Scholar
  47. Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M, Gotoh Y (2009) Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63:600–613. doi: 10.1016/j.neuron.2009.08.021 PubMedGoogle Scholar
  48. Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23:2824–2832PubMedGoogle Scholar
  49. Imura T, Nakano I, Kornblum HI, Sofroniew MV (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53:277–293. doi: 10.1002/glia.20281 PubMedGoogle Scholar
  50. Israsena N, Hu M, Fu W, Kan L, Kessler JA (2004) The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol 268:220–231. doi: 10.1016/j.ydbio.2003.12.024 PubMedGoogle Scholar
  51. Iwasaki Y, Hosoya T, Takebayashi H, Ogawa Y, Hotta Y, Ikenaka K (2003) The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development 130:6027–6035. doi: 10.1242/dev.00822 PubMedGoogle Scholar
  52. Jacobson M (1991) Developmental neurobiology. Plenum, New YorkGoogle Scholar
  53. Jones BW (2001) Glial cell development in the Drosophila embryo. Bioessays 23:877–887. doi: 10.1002/bies.1129 PubMedGoogle Scholar
  54. Jung S, Park RH, Kim S, Jeon YJ, Ham DS, Jung MY, Kim SS, Lee YD, Park CH, Suh-Kim H (2010) Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells Dev 19:831–841. doi: 10.1089/scd.2009.0093 PubMedGoogle Scholar
  55. Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural development. Dev Growth Differ 50(Suppl 1):S97–S103. doi: 10.1111/j.1440-169X.2008.00993.x PubMedGoogle Scholar
  56. Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, Graham BH, Foster AE, Novitch BG, Gronostajski RM, Deneen B (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74:79–94. doi: 10.1016/j.neuron.2012.01.024 PubMedGoogle Scholar
  57. Kawaguchi A, Ikawa T, Kasukawa T, Ueda HR, Kurimoto K, Saitou M, Matsuzaki F (2008) Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 135:3113–3124. doi: 10.1242/dev.022616 PubMedGoogle Scholar
  58. Kessaris N, Jamen F, Rubin L, Richardson WD (2004) Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131:1289–1298. doi: 10.1242/dev.01027 PubMedGoogle Scholar
  59. Kessaris N, Pringle N, Richardson WD (2008) Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos Trans R Soc Lond B Biol Sci 363:71–85. doi: 10.1098/rstb.2006.2013 PubMedGoogle Scholar
  60. Kim H, Shin J, Kim S, Poling J, Park HC, Appel B (2008) Notch-regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. Dev Dyn 237:2081–2089. doi: 10.1002/dvdy.21620 PubMedGoogle Scholar
  61. Kishi Y, Fujii Y, Hirabayashi Y, Gotoh Y (2012) HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat Neurosci 15:1127–1133. doi: 10.1038/nn.3165 PubMedGoogle Scholar
  62. Kohyama J, Sanosaka T, Tokunaga A, Takatsuka E, Tsujimura K, Okano H, Nakashima K (2010) BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J Cell Biol 189:159–170. doi: 10.1083/jcb.200908048 PubMedGoogle Scholar
  63. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757. doi: 10.1126/science.289.5485.1754 PubMedGoogle Scholar
  64. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. doi: 10.1146/annurev.neuro.051508.135600 PubMedGoogle Scholar
  65. Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840PubMedGoogle Scholar
  66. Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci 1:27–39PubMedGoogle Scholar
  67. Levitt P, Cooper ML, Rakic P (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev Biol 96:472–484. doi: 10.1016/0012-1606(83)90184-7 PubMedGoogle Scholar
  68. Li W, Cogswell CA, LoTurco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8562–8853Google Scholar
  69. Li X, Newbern JM, Wu Y, Morgan-Smith M, Zhong J, Charron J, Snider WD (2012) MEK is a key regulator of gliogenesis in the developing brain. Neuron 75:1035–1050. doi: 10.1016/j.neuron.2012.08.031 PubMedGoogle Scholar
  70. Liu L, Cundiff P, Abel G, Wang Y, Faigle R, Sakagami H, Xu M, Xia Z (2006) Extracellular signal-regulated kinase (ERK) 5 is necessary and sufficient to specify cortical neuronal fate. Proc Natl Acad Sci U S A 103:9697–9702. doi: 10.1073/pnas.0603373103 PubMedGoogle Scholar
  71. Loeffler M, Potten CS (1997) Stem cells and cellular pedigrees - a conceptual introduction. In: Potten CS (ed) Stem cells. Academic, Cambridge, pp 1–27Google Scholar
  72. Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC, Reynolds BA (2008) Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26:988–996. doi: 10.1634/stemcells.2007-0867 PubMedGoogle Scholar
  73. Mao H, Lv Z, Ho MS (2012) Gcm proteins function in the developing nervous system. Dev Biol 370:63–70. doi: 10.1016/j.ydbio.2012.07.018 PubMedGoogle Scholar
  74. Mason S, Piper M, Gronostajski RM, Richards LJ (2008) Nuclear factor one transcription factors in CNS development. Mol Neurobiol 39:10–23. doi: 10.1007/s12035-008-8048-6 PubMedGoogle Scholar
  75. McCarthy M, Turnbull DH, Walsh CA, Fishell G (2001) Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci 21:6772–6781PubMedGoogle Scholar
  76. Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22:74–85. doi: 10.1159/000017429 PubMedGoogle Scholar
  77. Mekki-Dauriac S, Agius E, Kan P, Cochard P (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129:5117–5130PubMedGoogle Scholar
  78. Ménard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, Barnabé-Heider F, Mir AA, Sterneck E, Peterson AC, Johnson PF, Vinson C, Miller FD (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36:597–610. doi: 10.1016/S0896-6273(02)01026-7 PubMedGoogle Scholar
  79. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918. doi: 10.1523/JNEUROSCI.1299-06.2006 PubMedGoogle Scholar
  80. Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369. doi: 10.1016/j.neuron.2007.04.019 PubMedGoogle Scholar
  81. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi: 10.1016/j.neuron.2011.05.001 PubMedGoogle Scholar
  82. Molne M, Studer L, Tabar V, Ting YT, Eiden MV, McKay RD (2000) Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J Neurosci Res 59:301–311. doi:10.1002/(SICI)1097-4547(20000201)59:3<301::AID-JNR3>3.0.CO;2-HPubMedGoogle Scholar
  83. Morshead CM, Garcia AD, Sofroniew MV, van Der Kooy D (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18:76–84. doi: 10.1046/j.1460-9568.2003.02727.x PubMedGoogle Scholar
  84. Mueller TD, Nickel J (2012) Promiscuity and specificity in BMP receptor activation. FEBS Lett 586:1846–1859. doi: 10.1016/j.febslet.2012.02.043 PubMedGoogle Scholar
  85. Munji RN, Choe Y, Li G, Siegenthaler JA, Pleasure SJ (2011) Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 31:1676–1687. doi: 10.1523/JNEUROSCI.5404-10.2011 PubMedGoogle Scholar
  86. Nagao M, Campbell K, Burns K, Kuan CY, Trumpp A, Nakafuku M (2008) Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF-p53 pathway. J Cell Biol 183:1243–1257. doi: 10.1083/jcb.200807130 PubMedGoogle Scholar
  87. Naka H, Nakamura S, Shimazaki T, Okano H (2008) Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 11:1014–1023. doi: 10.1038/nn.2168 PubMedGoogle Scholar
  88. Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482. doi: 10.1126/science.284.5413.479 PubMedGoogle Scholar
  89. Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, Nakashima K (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16:245–255. doi: 10.1016/j.devcel.2008.12.014 PubMedGoogle Scholar
  90. Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young, but not old, mice by reducing p16Ink4a and p19Arf expression. Cell 135:227–239. doi: 10.1016/j.cell.2008.09.017 PubMedGoogle Scholar
  91. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44. doi: 10.1002/cne.21669 PubMedGoogle Scholar
  92. O’Leary DD, Nakagawa Y (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling a realization of the neocortex. Curr Opin Neurobiol 12:14–25. doi: 10.1016/S0959-4388(02)00285-4 PubMedGoogle Scholar
  93. Palma V, Ruiz i Altaba A (2004) Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131:337–345. doi: 10.1242/dev.00930 PubMedGoogle Scholar
  94. Paschaki M, Lin SC, Wong RL, Finnell RH, Dollé P, Niederreither K (2012) Retinoic acid-dependent signaling pathways and lineage events in the developing mouse spinal cord. PLoS One 7:e32447. doi: 10.1371/journal.pone.0032447 PubMedGoogle Scholar
  95. Qian X, Goderie SK, Shen Q, Stern JH, Temple S (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125:3143–3152PubMedGoogle Scholar
  96. Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80. doi: 10.1016/S0896-6273(00)00086-6 PubMedGoogle Scholar
  97. Represa A, Shimazaki T, Simmonds M, Weiss S (2001) EGF-responsive neural stem cells are a transient population in the developing mouse spinal cord. Eur J Neurosci 14:452–462. doi: 10.1046/j.0953-816x.2001.01660.x PubMedGoogle Scholar
  98. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710. doi: 10.1126/science.1553558 PubMedGoogle Scholar
  99. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574PubMedGoogle Scholar
  100. Riobo NA, Haines GM, Emerson CP Jr (2006) Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 66:839–845. doi: 10.1158/0008-5472.CAN-05-2539 PubMedGoogle Scholar
  101. Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131–4142. doi: 10.1242/dev.01273 PubMedGoogle Scholar
  102. Sanosaka T, Namihira M, Asano H, Kohyama J, Aisaki K, Igarashi K, Kanno J, Nakashima K (2008) Identification of genes that restrict astrocyte differentiation of midgestational neural precursor cells. Neuroscience 155:780–788. doi: 10.1016/j.neuroscience.2008.06.039 PubMedGoogle Scholar
  103. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G (2006) Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127:185–197. doi: 10.1016/j.cell.2006.07.037 PubMedGoogle Scholar
  104. Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405Google Scholar
  105. Schaper A (1897) The earliest differentiation in the central nervous system of vertebrates. Science 5:430–431Google Scholar
  106. Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Sestan N, Anton ES (2003) Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci U S A 100:4251–4256. doi: 10.1073/pnas.0630496100 PubMedGoogle Scholar
  107. Schwamborn JC, Berezikov E, Knoblich JA (2009) The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136:913–925. doi: 10.1016/j.cell.2008.12.024 PubMedGoogle Scholar
  108. Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M, Gomez Gaviro MV, Booth S, Gao B, Cheah KSE, Lovell-Badge R, Briscoe J (2010) SOX9 induces and maintains neural stem cells. Nat Neurosci 13:1181–1189. doi: 10.1038/nn.2646 PubMedGoogle Scholar
  109. Shen Q, Zhong W, Jan YN, Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129:4843–4853PubMedGoogle Scholar
  110. Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE, Temple S (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743–751. doi: 10.1038/nn1694 PubMedGoogle Scholar
  111. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, Folias AE, Choe Y, May SR, Kume T, Napoli JL, Peterson AS, Pleasure SJ (2009) Retinoic acid from the meninges regulates cortical neuron generation. Cell 139:597–609. doi: 10.1016/j.cell.2009.10.004 PubMedGoogle Scholar
  112. Song MR, Ghosh A (2004) FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7:229–235. doi: 10.1038/nn1192 PubMedGoogle Scholar
  113. Soula C, Foulquier F, Duprat AM, Cochard P (1993) Lineage analysis of early neural plate cells: cells with purely neuronal fate coexist with bipotential neuroglial progenitors. Dev Biol 159:196–207. doi: 10.1006/dbio.1993.1233 PubMedGoogle Scholar
  114. Soustelle L, Trousse F, Jacques C, Ceron J, Cochard P, Soula C, Giangrande A (2007) Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord. Development 134:625–634. doi: 10.1242/dev.02750 PubMedGoogle Scholar
  115. Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689. doi: 10.1101/gad.259003 PubMedGoogle Scholar
  116. Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376. doi: 10.1016/S0092-8674(01)00224-0 PubMedGoogle Scholar
  117. Takahashi T, Nowakowski RS, Caviness VS Jr (1993) Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J Neurosci 13:820–833PubMedGoogle Scholar
  118. Takahashi T, Nowakowski RS, Caviness VS Jr (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosc 15:6058–6068Google Scholar
  119. Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758. doi: 10.1016/S1534-5807(01)00101-0 PubMedGoogle Scholar
  120. Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T (2001) Notch1 and Notch3 instructively restrict bFGF responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55. doi: 10.1016/S0896-6273(01)00179-9 PubMedGoogle Scholar
  121. Temple S (2001) The development of neural stem cells. Nature 414:112–117. doi: 10.1038/35102174 PubMedGoogle Scholar
  122. Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188. doi: 10.1006/dbio.1998.9192 PubMedGoogle Scholar
  123. Tsunekawa Y, Britto JM, Takahashi M, Polleux F, Tan SS, Osumi N (2012) Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates. EMBO J 31:1879–1892. doi: 10.1038/emboj.2012.43 PubMedGoogle Scholar
  124. Vallejo M (2009) PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 39:90–100. doi: 10.1007/s12035-009-8055-2 PubMedGoogle Scholar
  125. Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67. doi: 10.1016/j.neuron.2004.12.026 PubMedGoogle Scholar
  126. Wang Y, Kim E, Wang X, Novitch BG, Yoshikawa K, Chang LS, Zhu Y (2012) ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell 150:816–830. doi: 10.1016/j.cell.2012.06.034 PubMedGoogle Scholar
  127. Wohl CA, Weiss S (1998) Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J Neurobiol 37:281–290. doi:10.1002/(SICI)1097-4695(19981105)37:2<281::AID-NEU7>3.0.CO;2-JPubMedGoogle Scholar
  128. Wu Y, Liu Y, Levine EM, Rao MS (2003) Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors. Dev Dyn 226:675–689. doi: 10.1002/dvdy.10278 PubMedGoogle Scholar
  129. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715. doi: 10.1038/nn1475 Google Scholar
  130. Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N, Gotoh Y (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:2553–2563. doi: 10.1242/dev.02419 PubMedGoogle Scholar
  131. Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ, Mehler MF (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci U S A 99:16273–16278. doi: 10.1073/pnas.232586699 PubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of Physiology, School of MedicineKeio UniversityTokyoJapan

Personalised recommendations