Genomic Imprinting in the Mammalian Brain

  • Wei-Chao Huang
  • Christopher Gregg


Genomic imprinting has been primarily studied in the context of embryonic growth and development. However, over the past several years new insights into the roles of imprinted genes in the brain have emerged. Using a novel approach based on next-generation sequencing we recently uncovered hundreds of genes exhibiting complex imprinting effects in the brain, including imprinting effects that are brain region specific, developmental stage specific, and sex specific. Here, we provide a historical perspective on genomic imprinting to introduce this exciting area to the neuroscience field. Further, we comment on emerging concepts related to imprinting in the brain revealed by next-generation sequencing. This work suggests a major frontier exists to understand the functional roles of imprinted genes in the regulation of brain development, function, and behavior.


Imprint Gene Preoptic Area Angelman Syndrome Paternal Allele Maternal Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramowitz LK, Bartolomei MS (2012) Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 22(2):72–78. doi:S0959-437X(11)00183-3 [pii] 10.1016/j.gde.2011.12.001PubMedCrossRefGoogle Scholar
  2. Abu-Amero S, Monk D, Frost J, Frost J, Preece M, Stanier P, Moore GE (2008) The genetic aetiology of Silver–Russell syndrome. J Med Genet 45(4):193–199. doi:jmg.2007.053017 [pii] 10.1136/jmg.2007.053017PubMedCrossRefGoogle Scholar
  3. Allen ND, Logan K, Lally G, Drage DJ, Norris ML, Keverne EB (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc Natl Acad Sci U S A 92(23):10782–10786PubMedCrossRefGoogle Scholar
  4. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82((1):160–164. doi:S0002-9297(07)00021-3 [pii] 10.1016/j.ajhg.2007.09.015PubMedCrossRefGoogle Scholar
  5. Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 45:379–403. doi: 10.1146/annurev-genet-110410-132459 PubMedCrossRefGoogle Scholar
  6. Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349(6304):84–87. doi: 10.1038/349084a0 PubMedCrossRefGoogle Scholar
  7. Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351(6322):153–155. doi: 10.1038/351153a0 PubMedCrossRefGoogle Scholar
  8. Bartolomei MS, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7(9):1663–1673PubMedCrossRefGoogle Scholar
  9. Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311(5984):374–376PubMedCrossRefGoogle Scholar
  10. Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485. doi: 10.1038/35013100 PubMedCrossRefGoogle Scholar
  11. Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330(6004):617–622. doi:330/6004/617 [pii] 10.1126/science.1194776PubMedCrossRefGoogle Scholar
  12. Buiting K (2010) Prader–Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 154C(3):365–376. doi: 10.1002/ajmg.c.30273 PubMedCrossRefGoogle Scholar
  13. Burd L, Vesely B, Martsolf J, Kerbeshian J (1990) Prevalence study of Prader–Willi syndrome in North Dakota. Am J Med Genet 37(1):97–99. doi: 10.1002/ajmg.1320370122 PubMedCrossRefGoogle Scholar
  14. Butler MG (1996) Molecular diagnosis of Prader–Willi syndrome: comparison of cytogenetic and molecular genetic data including parent of origin dependent methylation DNA patterns. Am J Med Genet 61(2):188–190. doi: 10.1002/ajmg.1320610202 PubMedCrossRefGoogle Scholar
  15. Cassidy SB, Driscoll DJ (2009) Prader–Willi syndrome. Eur J Hum Genet 17(1):3–13. doi:ejhg2008165 [pii] 10.1038/ejhg.2008.165PubMedCrossRefGoogle Scholar
  16. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader–Willi syndrome. Genet Med 14(1):10–26. doi:gim0b013e31822bead0 [pii] 10.1038/gim.0b013e31822bead0PubMedCrossRefGoogle Scholar
  17. Charalambous M, da Rocha ST, Ferguson-Smith AC, Ferguson-Smith AC (2007) Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes 14((1):3–12. doi:10.1097/MED.0b013e328013daa2 01266029-200702000-00003 [pii]PubMedCrossRefGoogle Scholar
  18. Choufani S, Shuman C, Weksberg R (2010) Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 154C(3):343–354. doi: 10.1002/ajmg.c.30267 PubMedCrossRefGoogle Scholar
  19. Cooper DW, VandeBerg JL, Sharman GB, Poole WE (1971) Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nat New Biol 230(13):155–157PubMedCrossRefGoogle Scholar
  20. Crouse HV (1960) The controlling element in sex chromosome behavior in sciara. Genetics 45(10):1429–1443PubMedGoogle Scholar
  21. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64(4):849–859. doi:0092-8674(91)90513-X [pii]PubMedCrossRefGoogle Scholar
  22. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW, Wellman N, Loftus J, Nanthakumar B, Razi K, Stewart J, Comazzi M, Vita A, Heffner T, Sherrington R (2002) A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 159(5):803–812PubMedCrossRefGoogle Scholar
  23. Dempfle A, Scherag A, Hein R, Beckmann L, Chang-Claude J, Schafer H (2008) Gene-environment interactions for complex traits: definitions, methodological requirements and challenges. Eur J Hum Genet 16((10):1164–1172. doi:ejhg2008106 [pii] 10.1038/ejhg.2008.106PubMedCrossRefGoogle Scholar
  24. Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19(3):281–289. doi:S0955-0674(07)00065-8 [pii] 10.1016/ Scholar
  25. Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Farinas I, Ferguson-Smith AC (2011) Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475(7356):381–385. doi:nature10229 [pii] 10.1038/nature10229PubMedCrossRefGoogle Scholar
  26. Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32(3):426–431. doi:10.1038/ng988 ng1102-345 [pii]PubMedCrossRefGoogle Scholar
  27. Fradin D, Boileau P, Lepercq J, Bougneres P (2006) ‘Non-Mendelian’ genetics of fetal growth. J Endocrinol Invest 29(1 Suppl):11–15PubMedGoogle Scholar
  28. Francks C, DeLisi LE, Shaw SH, Fisher SE, Richardson AJ, Stein JF, Monaco AP (2003) Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Hum Mol Genet 12(24):3225–3230. doi:10.1093/hmg/ddg362 ddg362 [pii]PubMedCrossRefGoogle Scholar
  29. Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 77(11):6715–6719PubMedCrossRefGoogle Scholar
  30. Gregg C, Zhang J, Butler JE, Haig D, Dulac C (2010a) Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329(5992):682–685. doi:science.1190831 [pii] 10.1126/science.1190831PubMedCrossRefGoogle Scholar
  31. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010b) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648. doi:science.1190830 [pii] 10.1126/science.1190830PubMedCrossRefGoogle Scholar
  32. Guilmatre A, Sharp AJ (2012) Parent of origin effects. Clin Genet 81(3):201–209. doi: 10.1111/j.1399-0004.2011.01790.x PubMedCrossRefGoogle Scholar
  33. Haig D (2006) Intragenomic politics. Cytogenet Genome Res 113(1-4):68–74. doi:90816 [pii] 10.1159/000090816PubMedCrossRefGoogle Scholar
  34. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489. doi: 10.1038/35013106 PubMedCrossRefGoogle Scholar
  35. Hemberger M, Redies C, Krause R, Oswald J, Walter J, Fundele RH (1998) H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. Dev Genes Evol 208(7):393–402PubMedCrossRefGoogle Scholar
  36. Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet A 146A(16):2041–2052. doi: 10.1002/ajmg.a.32364 PubMedCrossRefGoogle Scholar
  37. Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc JL, Cau P, Berta P, Lalande M, Muscatelli F (1997) The human necdin gene, NDN, is maternally imprinted and located in the Prader–Willi syndrome chromosomal region. Nat Genet 17(3):357–361. doi: 10.1038/ng1197-357 PubMedCrossRefGoogle Scholar
  38. Kermicle JL (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66(1):69–85PubMedGoogle Scholar
  39. Keverne EB (1997) Genomic imprinting in the brain. Curr Opin Neurobiol 7(4):463–468. doi:S0959-4388(97)80023-2 [pii]PubMedCrossRefGoogle Scholar
  40. Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 92(1):91–100. doi:016538069500209X [pii]PubMedCrossRefGoogle Scholar
  41. Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311(5758):230–232. doi:1118265 [pii] 10.1126/science.1118265PubMedCrossRefGoogle Scholar
  42. Knoll JH, Nicholls RD, Magenis RE, Graham JM Jr, Lalande M, Latt SA (1989) Angelman and Prader–Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet 32(2):285–290. doi: 10.1002/ajmg.1320320235 PubMedCrossRefGoogle Scholar
  43. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, Jonasdottir A, Sigurdsson A, Kristinsson KT, Frigge ML, Gylfason A, Olason PI, Gudjonsson SA, Sverrisson S, Stacey SN, Sigurgeirsson B, Benediktsdottir KR, Sigurdsson H, Jonsson T, Benediktsson R, Olafsson JH, Johannsson OT, Hreidarsson AB, Sigurdsson G, Ferguson-Smith AC, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K (2009) Parental origin of sequence variants associated with complex diseases. Nature 462(7275):868–874. doi:nature08625 [pii] 10.1038/nature08625PubMedCrossRefGoogle Scholar
  44. Lamb JA, Barnby G, Bonora E, Sykes N, Bacchelli E, Blasi F, Maestrini E, Broxholme J, Tzenova J, Weeks D, Bailey AJ, Monaco AP (2005) Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J Med Genet 42(2):132–137. doi:42/2/132 [pii] 10.1136/jmg.2004.025668PubMedCrossRefGoogle Scholar
  45. Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD (1981) Deletions of chromosome 15 as a cause of the Prader–Willi syndrome. N Engl J Med 304(6):325–329. doi: 10.1056/NEJM198102053040604 PubMedCrossRefGoogle Scholar
  46. Leff SE, Brannan CI, Reed ML, Ozcelik T, Francke U, Copeland NG, Jenkins NA (1992) Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region. Nat Genet 2(4):259–264. doi: 10.1038/ng1292-259 PubMedCrossRefGoogle Scholar
  47. Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375(6526):34–39. doi: 10.1038/375034a0 PubMedCrossRefGoogle Scholar
  48. Liu XQ, Greenwood CM, Wang KS, Paterson AD (2005) A genome scan for parent-of-origin linkage effects in alcoholism. BMC Genet 6(Suppl 1):S160. doi:1471-2156-6-S1-S160 [pii] 10.1186/1471-2156-6-S1-S160PubMedCrossRefGoogle Scholar
  49. Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, Wutz A, Schageman J, Hahner L, Davies C, Barlow DP (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25(1):19–21. doi: 10.1038/75546 PubMedCrossRefGoogle Scholar
  50. Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34(6):293–303. doi:S0166-2236(11)00056-7 [pii] 10.1016/j.tins.2011.04.001PubMedCrossRefGoogle Scholar
  51. Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15(1):74–77. doi: 10.1038/ng0197-74 PubMedCrossRefGoogle Scholar
  52. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37(1):179–183. doi:0092-8674(84)90313-1 [pii]PubMedCrossRefGoogle Scholar
  53. Mohtat D, Susztak K (2010) Fine tuning gene expression: the epigenome. Semin Nephrol 30(5):468–476. doi:S0270-9295(10)00112-9 [pii] 10.1016/j.semnephrol.2010.07.004PubMedCrossRefGoogle Scholar
  54. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, Cremer H (2000) Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader–Willi syndrome. Hum Mol Genet 9(20):3101–3110PubMedCrossRefGoogle Scholar
  55. Nguyen DK, Disteche CM (2006) High expression of the mammalian X chromosome in brain. Brain Res 1126(1):46–49. doi:S0006-8993(06)02456-5 [pii] 10.1016/j.brainres.2006.08.053PubMedCrossRefGoogle Scholar
  56. Nicholls RD, Knoll JH, Glatt K, Hersh JH, Brewster TD, Graham JM Jr, Wurster-Hill D, Wharton R, Latt SA (1989) Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader–Willi syndrome. Am J Med Genet 33(1):66–77. doi: 10.1002/ajmg.1320330109 PubMedCrossRefGoogle Scholar
  57. Pinto C, Souza RP, Lioult D, Semeralul M, Kennedy JL, Warsh JJ, Wong AH, Luca VD (2011) Parent of origin effect and allelic expression imbalance of the serotonin transporter in bipolar disorder and suicidal behaviour. Eur Arch Psychiatry Clin Neurosci 261(8):533–538. doi: 10.1007/s00406-011-0192-8 PubMedCrossRefGoogle Scholar
  58. Riday TT, Dankoski EC, Krouse MC, Fish EW, Walsh PL, Han JE, Hodge CW, Wightman RM, Philpot BD, Malanga CJ (2012) Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest 122(12):4544–4554. doi:61888 [pii] 10.1172/JCI61888PubMedCrossRefGoogle Scholar
  59. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721. doi:ng.158 [pii] 10.1038/ng.158PubMedCrossRefGoogle Scholar
  60. Sandhu KS (2010) Systems properties of proteins encoded by imprinted genes. Epigenetics 5(7):627–636. doi:12883 [pii]PubMedCrossRefGoogle Scholar
  61. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813. doi:10.1038/415810a 415810a [pii]PubMedCrossRefGoogle Scholar
  62. Stoger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73(1):61–71. doi:0092-8674(93)90160-R [pii]PubMedCrossRefGoogle Scholar
  63. Surani MA, Barton SC (1983) Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222(4627):1034–1036PubMedCrossRefGoogle Scholar
  64. Surani MA, Barton SC (1984) Spatial distribution of blastomeres is dependent on cell division order and interactions in mouse morulae. Dev Biol 102(2):335–343. doi:0012-1606(84)90198-2 [pii]PubMedCrossRefGoogle Scholar
  65. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256(5519):640–642PubMedCrossRefGoogle Scholar
  66. Thomas A, Chess S, Birch HG (1970) The origin of personality. Sci Am 223(2):102–109PubMedCrossRefGoogle Scholar
  67. Webber AL, Ingram RS, Levorse JM, Tilghman SM (1998) Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 391(6668):711–715. doi: 10.1038/35655 PubMedCrossRefGoogle Scholar
  68. West JD, Frels WI, Chapman VM, Papaioannou VE (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12(4):873–882. doi:0092-8674(77)90151-9 [pii]PubMedCrossRefGoogle Scholar
  69. Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8(11):832–843. doi:nrn2235 [pii] 10.1038/nrn2235PubMedCrossRefGoogle Scholar
  70. Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, Magenis RE, Moncla A, Schinzel AA, Summers JA, Wagstaff J (2006) Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A 140(5):413–418. doi: 10.1002/ajmg.a.31074 PubMedGoogle Scholar
  71. Williamson CM, Ball ST, Dawson C, Mehta S, Beechey CV, Fray M, Teboul L, Dear TN, Kelsey G, Peters J (2011) Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet 7(3):e1001347. doi: 10.1371/journal.pgen.1001347 PubMedCrossRefGoogle Scholar
  72. Wolf JB, Hager R, Cheverud JM (2008) Genomic imprinting effects on complex traits: a phenotype-based perspective. Epigenetics 3(6):295–299. doi:7257 [pii]PubMedCrossRefGoogle Scholar
  73. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957PubMedGoogle Scholar
  74. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389(6652):745–749. doi: 10.1038/39631 PubMedCrossRefGoogle Scholar
  75. Wyszynski DF, Panhuysen CI (1999) Parental sex effect in families with alcoholism. Genet Epidemiol 17(Suppl 1):S409–S413PubMedGoogle Scholar
  76. Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48(2):219–230. doi:S1097-2765(12)00686-7 [pii] 10.1016/j.molcel.2012.07.033PubMedCrossRefGoogle Scholar
  77. Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H (2001) A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 17(12):697–701. doi:S0168-9525(01)02446-5 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of Neurobiology and Anatomy and Human Genetics, School of MedicineUniversity of UtahEast Salt Lake CityUSA

Personalised recommendations