Skip to main content

The Roles of RECK, a Membrane-Anchored Regulator of Pericellular Proteolysis, in Neural Development

  • Chapter
  • First Online:
Cortical Development
  • 1206 Accesses

Abstract

The brain is unique in its extracellular matrix composition. Although some extracellular proteases, such as tissue plasminogen activator and matrix metalloproteinases, have been implicated in tissue destruction after brain ischemia, the roles of pericellular proteolysis and its regulation in brain development, functions, and homeostasis remain largely unknown. RECK, a membrane-anchored regulator of extracellular metalloproteases, was initially isolated as a candidate tumor suppressor; subsequent studies revealed its importance in mammalian embryogenesis, especially in the mid-gestation development of vascular and central nervous systems. Emerging evidence in mouse models now suggests its roles in corticogenesis as well as postischemic tissue protection and repair in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

GPI:

Glycosylphosphatidylinositol

MMP:

Matrix metalloproteinase

NPC:

Neural precursor cells

RECK:

Reversion-inducing cysteine-rich protein with Kazal motifs

References

  • Adibhatla RM, Hatcher JF (2008) Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets 7:243–253

    Article  PubMed  CAS  Google Scholar 

  • Berretta S (2012) Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62:1584–1597

    Article  PubMed  CAS  Google Scholar 

  • Bonneh-Barkay D, Wiley CA (2009) Brain extracellular matrix in neurodegeneration. Brain Pathol 19:573–585

    Article  PubMed  CAS  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    Article  PubMed  Google Scholar 

  • Chandana EP, Maeda Y, Ueda A, Kiyonari H, Oshima N, Yamamoto M, Kondo S, Oh J, Takahashi R, Yoshida Y, Kawashima S, Alexander DB, Kitayama H, Takahashi C, Tabata Y, Matsuzaki T, Noda M (2010) Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice. BMC Dev Biol 10:84

    Article  PubMed  Google Scholar 

  • Echizenya M, Kondo S, Takahashi R, Oh J, Kawashima S, Kitayama H, Takahashi C, Noda M (2005) The membrane-anchored MMP-regulator RECK is a target of myogenic regulatory factors. Oncogene 24:5850–5857

    Article  PubMed  CAS  Google Scholar 

  • Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  PubMed  CAS  Google Scholar 

  • Jones GC, Riley GP (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160–169

    Article  PubMed  Google Scholar 

  • Kawashima S, Imamura Y, Chandana EP, Noda T, Takahashi R, Adachi E, Takahashi C, Noda M (2008) Localization of the membrane-anchored MMP-regulator RECK at the neuromuscular junctions. J Neurochem 104:376–385

    PubMed  CAS  Google Scholar 

  • Kondo S, Shukunami C, Morioka Y, Matsumoto N, Takahashi R, Oh J, Atsumi T, Umezawa A, Kudo A, Kitayama H, Hiraki Y, Noda M (2007) Dual effects of the membrane-anchored MMP regulator RECK on chondrogenic differentiation of ATDC5 cells. J Cell Sci 120:849–857

    Article  PubMed  CAS  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Takegami Y, Okawa K, Muraguchi T, Noda M, Takahashi C (2007) The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways. J Biol Chem 282:12341–12352

    Article  PubMed  CAS  Google Scholar 

  • Morioka Y, Monypenny J, Matsuzaki T, Shi S, Alexander DB, Kitayama H, Noda M (2009) The membrane-anchored metalloproteinase regulator RECK stabilizes focal adhesions and anterior-posterior polarity in fibroblasts. Oncogene 28:1454–1464

    Article  PubMed  CAS  Google Scholar 

  • Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EP, Omura A, Miki T, Takahashi R, Matsumoto N, Ludwig A, Noda M, Takahashi C (2007) RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci 10:838–845

    Article  PubMed  CAS  Google Scholar 

  • Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Takahashi C (2007) Recklessness as a hallmark of aggressive cancer. Cancer Sci 98:1659–1665

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Takahashi C, Matsuzaki T, Kitayama H (2010) What we learn from transformation suppressor genes: lessons from RECK. Future Oncol 6:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Takahashi R, Adachi E, Kondo S, Kuratomi S, Noma A, Alexander DB, Motoda H, Okada A, Seiki M, Itoh T, Itohara S, Takahashi C, Noda M (2004) Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23:5041–5048

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207

    Article  PubMed  CAS  Google Scholar 

  • Omura A, Matsuzaki T, Mio K, Ogura T, Yamamoto M, Fujita A, Okawa K, Kitayama H, Takahashi C, Sato C, Noda M (2009) RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin. J Biol Chem 284:3461–3469

    Article  PubMed  CAS  Google Scholar 

  • Park S, Lee C, Sabharwal P, Zhang M, Meyers CL, Sockanathan S (2013) GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science 339:324–328

    Article  PubMed  CAS  Google Scholar 

  • Parr BA, McMahon AP (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374:350–353

    Article  PubMed  CAS  Google Scholar 

  • Pei J, Grishin NV (2012) Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins. Protein Sci 21:1172–1184

    Article  PubMed  CAS  Google Scholar 

  • Prendergast A, Linbo TH, Swarts T, Ungos JM, McGraw HF, Krispin S, Weinstein BM, Raible DW (2012) The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development 139:1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Rao M, Sockanathan S (2005) Transmembrane protein GDE2 induces motor neuron differentiation in vivo. Science 309:2212–2215

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  • Rivera S, Khrestchatisky M, Kaczmarek L, Rosenberg GA, Jaworski DM (2010) Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 30:15337–15357

    Article  PubMed  CAS  Google Scholar 

  • Sabharwal P, Lee C, Park S, Rao M, Sockanathan S (2011) GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling. Neuron 71:1058–1070

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Simizu S, Osada H (2009) RECK negatively regulates matrix metalloproteinase-9 transcription. Cancer Res 69:1502–1508

    Article  PubMed  CAS  Google Scholar 

  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A, Ikawa Y, Ratzkin BJ, Arakawa T, Noda M (1998) Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A 95:13221–13226

    Article  PubMed  CAS  Google Scholar 

  • Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Imamura Y, Ishibashi R, Chandana EP, Yamamoto M, Noda M (2010) The Reck tumor suppressor protein alleviates tissue damage and promotes functional recovery after transient cerebral ischemia in mice. J Neurochem 115:385–398

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, Kitayama H, Echizenya M, Morioka Y, Alexander DB, Yagi T, Itohara S, Nakamura T, Akiyama H, Noda M (2012) The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open 1:458–466

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Niswander L (1995) Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80:939–947

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I am grateful to Drs. Tetsuo Yamamori, Ryoichiro Kageyama, and Masayoshi Mishina for valuable discussions. I also thank all the colleagues who contributed to this study. Our study has been supported by Grant-in-Aid for Scientific Research on Innovative Areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Noda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Noda, M. (2013). The Roles of RECK, a Membrane-Anchored Regulator of Pericellular Proteolysis, in Neural Development. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_10

Download citation

Publish with us

Policies and ethics