Skip to main content

Dynamic Notch Signaling in Neural Progenitor Cells

  • Chapter
  • First Online:
Cortical Development

Abstract

Notch signaling plays an essential role in maintenance of neural progenitor cells. Differentiating neurons express Notch ligands such as Delta-like1 (Dll1), which activate Notch signaling in neighboring cells. Activation of Notch signaling induces the expression of Hes1 and Hes5, which repress proneural gene expression, thereby maintaining neural progenitor cells. Thus, differentiating neurons keep their neighbors undifferentiated. Interestingly, Hes1 expression oscillates with a period of 2–3 h by negative feedback, and Hes1 oscillations drive the oscillatory expression of Dll1 and the proneural gene Neurogenin2 (Neurog2). Neurog2 oscillation cannot induce neuronal differentiation, and Dll1 oscillation leads to the mutual activation of Notch signaling between neighboring cells. Thus, neural progenitor cells also keep each other undifferentiated via oscillation in Notch signaling. Not all cells express Hes1 in an oscillatory manner: cells in boundary regions such as the isthmus express Hes1 in a sustained manner, and this sustained Hes1 expression seems to be important for the maintenance of boundary regions. Thus, Notch signaling molecules regulate various aspects of neural development by changing the expression dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem 267:21879–21885

    PubMed  CAS  Google Scholar 

  • Ali F, Hindley C, McDowell G, Deibler R, Jones A, Kirschner M, Guillemot F, Philpott A (2011) Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development 138:4267–4277

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  PubMed  CAS  Google Scholar 

  • Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133:2467–2476

    Article  PubMed  CAS  Google Scholar 

  • Bai G, Sheng N, Xie Z, Bian W, Yokota Y, Benezra R, Kageyama R, Guillemot F, Jing N (2007) Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 13:283–297

    Article  PubMed  CAS  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    Article  PubMed  CAS  Google Scholar 

  • Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R (2001) Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 15:2642–2647

    Article  PubMed  CAS  Google Scholar 

  • Bessho Y, Hirata H, Masamizu Y, Kageyama R (2003) Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 17:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Bonev B, Stanley P, Papalopulu N (2012) MicroRNA-9 modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2:10–18

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Fernandez J, Mische S, Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. Genes Dev 13:2218–2230

    Article  PubMed  CAS  Google Scholar 

  • Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    Article  PubMed  CAS  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    Article  PubMed  CAS  Google Scholar 

  • Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  PubMed  CAS  Google Scholar 

  • Fujita S (2003) The discovery of the matrix cell, the identification of the multipotent neural stem cell and the development of the central nervous system. Cell Struct Funct 28:205–228

    Article  PubMed  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  • Grbavec D, Stifani S (1996) Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223:701–705

    Article  PubMed  CAS  Google Scholar 

  • Hansen DV, Lui JH, Parker PRL, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  PubMed  CAS  Google Scholar 

  • Harima Y, Takashima Y, Ueda Y, Ohtsuka T, Kageyama R (2013) Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep 3:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550

    Article  PubMed  CAS  Google Scholar 

  • Hindley C, Ali F, McDowell G, Cheng K, Jones A, Guillemot F, Philpott A (2012) Post-translational modification of Ngn2 differentially affects transcription of distinct targets to regulate the balance between progenitor maintenance and differentiation. Development 139:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Tomita K, Bessho Y, Kageyama R (2001) Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J 20:4454–4466

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S, Lewis J, Kageyama R (2004) Instability of Hes7 protein is critical for the somite segmentation clock. Nat Genet 36:750–754

    Article  PubMed  CAS  Google Scholar 

  • Honjo T (1996) The shortest path from the surface to the nucleus: RBP-J /Su(H) transcription factor. Genes Cells 1:1–9

    Article  PubMed  CAS  Google Scholar 

  • Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010) Essential roles of Notch signaling in maintenance of neural stem cells in the developing and adult brains. J Neurosci 30:3489–3498

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13:1799–1805

    PubMed  CAS  Google Scholar 

  • Ishibashi M, Ang S-L, Shiota K, Nakanishi S, Kageyama R, Guillemot F (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis and severe neural tube defects. Genes Dev 9:3136–3148

    Article  PubMed  CAS  Google Scholar 

  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A (1995) Signalling downstream of activated mammalian Notch. Nature 377:355–358

    Article  PubMed  CAS  Google Scholar 

  • Jensen MH, Sneppen K, Tiana G (2003) Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett 541:176–177

    Article  PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Kobayashi T (2007) The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Kageyama R, Niwa Y, Isomura A, González A, Harima Y (2012) Oscillatory gene expression and somitogenesis. WIREs Dev Biol 1. doi:10.1002/wdev.46

    Google Scholar 

  • Kawaguchi A, Ikawa T, Kasukawa T, Ueda HR, Kurimoto K, Saitou M, Matsuzaki F (2008) Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 135:3113–3124

    Article  PubMed  CAS  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  • Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13:1398–1408

    Article  PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    PubMed  CAS  Google Scholar 

  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci U S A 103:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  PubMed  CAS  Google Scholar 

  • Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355

    Article  PubMed  CAS  Google Scholar 

  • Monk NAM (2003) Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr Biol 13:1409–1413

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Masamizu Y, Liu T, Nakayama R, Deng C-X, Kageyama R (2007) The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and Notch signaling in the somite segmentation clock. Dev Cell 13:298–304

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Shimojo H, Isomura A, González A, Miyachi H, Kageyama R (2011) Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev 25:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem 276:30467–30474

    Article  PubMed  CAS  Google Scholar 

  • Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69:840–855

    Article  PubMed  CAS  Google Scholar 

  • Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39:13–25

    Article  PubMed  CAS  Google Scholar 

  • Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6:2620–2634

    Article  PubMed  CAS  Google Scholar 

  • Sessa A, Mao C, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69

    Article  PubMed  CAS  Google Scholar 

  • Shimojo H, Ohtsuka T, Kageyama R (2008) Oscillations in Notch signaling regulate maintenance of neural progenitors. Neuron 58:52–64

    Article  PubMed  CAS  Google Scholar 

  • Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695

    Article  PubMed  CAS  Google Scholar 

  • Takashima Y, Ohtsuka T, González A, Miyachi H, Kageyama R (2011) Intronic delay is essential for oscillatory expression in the segmentation clock. Proc Natl Acad Sci U S A 108:3300–3305

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi K, Sasai Y, Sakai Y, Watanabe T, Nakanishi S, Kageyama R (1994) Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1: negative autoregulation through the multiple N box elements. J Biol Chem 269:5150–5156

    PubMed  CAS  Google Scholar 

  • Tan S-L, Nishi M, Ohtsuka T, Matsui T, Takemoto K, Kamio-Miura A, Aburatani H, Shinkai Y, Kageyama R (2012a) Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 139:3806–3816

    Article  PubMed  CAS  Google Scholar 

  • Tan S-L, Ohtsuka T, González A, Kageyama R (2012b) MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells 17:952–961

    Article  PubMed  CAS  Google Scholar 

  • Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, Kageyama R (2007) Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci U S A 104:11292–11297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichiro Kageyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Shimojo, H., Maeda, Y., Ohtsuka, T., Kageyama, R. (2013). Dynamic Notch Signaling in Neural Progenitor Cells. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_1

Download citation

Publish with us

Policies and ethics