Classical Estimation Theory

Part of the Springer Theses book series (Springer Theses)


To formulate error and disturbance in quantum measurement, the estimation process from the measurement outcomes has an essential role. In this chapter, we review classical estimation theory [1][3] and introduce Fisher information, which gives the upper bound of the accuracy of the estimation [3]


Probability Distribution Likelihood Function Maximum Likelihood Estimator Fisher Information Relative Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Fisher, Math. Proc. Cambridge Philos. Soc. 22, 700 (1925)ADSCrossRefMATHGoogle Scholar
  2. 2.
    H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1946)Google Scholar
  3. 3.
    E. Lehmann, G. Casella, Theory of Point Estimation (Springer, New York, 1983)Google Scholar
  4. 4.
    E. Moore, Bull. Amer. Math. Soc. 26, 394 (1920)Google Scholar
  5. 5.
    R. Penrose, Proc. Cambridge Philos. Soc. 51, 406 (1955)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    N.N. Chentsov (Čencov), Statistical Decision Rules and Optimal Inference (Amer Mathematical Society, USA, 1982)Google Scholar
  7. 7.
    L.L. Campbell, Proc. Am. Math. Soc. 98, 135 (1986)MATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations