Advertisement

Reviews of Uncertainty Relations

  • Yu Watanabe
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we provide a brief overview of various uncertainty relations. First, we review historical uncertainty relations: Heisenberg’s gamma-ray microscope and von-Neumann’s Doppler speed meter. These uncertainty relations epitomize trade-off relation between error and disturbance in quantum measurement process. Next, we review a different type of uncertainty relations: Kennard-Robertson’s inequality and Schrödinger’s inequality. These characterize trade-off relations of inherent fluctuations of observables. Finally, we review Arthurs-Goodman’s inequality and Ozawa’s inequality that based on modern quantum measurement theory.

Keywords

Commutation Relation Measurement Process Uncertainty Relation Quantum Measurement Projective Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Heisenberg, Zeitschrift fr Physik A Hadrons Nuclei 43, 172 (1927)ADSCrossRefMATHGoogle Scholar
  2. 2.
    J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement (Princeton Univ Press, New Jersey, 1983)Google Scholar
  3. 3.
    E.B. Davies, J.T. Lewis, Commun. Math. Phys. 17, 239 (1970)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M. Ozawa, J. Math. Phys. 25, 79 (1984)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ Pr, 1955)Google Scholar
  6. 6.
    V. Braginsky, F. Khalili, K. Thorne, Quantum Measurement (Cambridge Univ Pr, Cambridge, 1992)Google Scholar
  7. 7.
    E.H. Kennard, Zeitschrift fr Physik A Hadrons Nuclei 44, 326 (1927)ADSCrossRefMATHGoogle Scholar
  8. 8.
    H.P. Robertson, Phys. Rev. 34, 163 (1929)ADSCrossRefGoogle Scholar
  9. 9.
    E. Schrödinger, Proc. Prussian Acad. Sci. Phys. Math. Sect. XIX, 293 (1930)Google Scholar
  10. 10.
    E. Arthurs, J.L. Kelly, Bell Syst. Tech. J 44, 725 (1965)CrossRefGoogle Scholar
  11. 11.
    E. Arthurs, M.S. Goodman, Phys. Rev. Lett. 60, 2447 (1988)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Ozawa, Phys. Rev. A 67, 042105 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ozawa, Phys. Lett. A 320, 367 (2004)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Ozawa, Ann. Phys. 311, 350 (2004)ADSCrossRefMATHGoogle Scholar
  15. 15.
    C.W. Helstrom, J. Stat. Phys. 1, 231 (1969)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)Google Scholar
  17. 17.
    M. Hayashi, Quantum Information: An Introduction (Springer Verlag, Berlin, 2006)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations