Skip to main content

Intravenous Anesthetics and Neuroprotection

  • Chapter

Abstract

Some intravenous anesthetics have been vigorously investigated as logical candidates for neuroprotectants. Generally, such anesthetics can suppress excitotoxicity and depolarization during ischemia and the early period of reperfusion, effects which contribute to the neuroprotective efficacy of these drugs. Neuronal death, however, is believed to be an ongoing process which continues for a long time after any initial ischemic injury has occurred. Recently, the neuroprotective efficacy of anesthetics has been called into doubt due to this process coupled with the complexity of postischemic events. In this chapter, the neuroprotective properties of intravenous anesthetics are reviewed, focusing on barbiturates, benzodiazepines, dexmedetomidine, and propofol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kawaguchi M, Kimbro JR, Drummond JC, Cole DJ, Kelly PJ, Patel PM (2000) Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology 92:1335–1342

    Article  CAS  PubMed  Google Scholar 

  2. Du C, Hu R, Csernansky C, Hsu C, Choi D (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab 16:195–201

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Chopp M, Jiang N, Yao F, Zaloga C (1995) Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15:389–397

    Article  CAS  PubMed  Google Scholar 

  4. Puil E, el Beheiry H (1990) Anaesthetic suppression of transmitter actions in neocortex. Br J Pharmacol 101:61–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Puil E, el Beheiry H, Baimbridge K (1990) Anesthetic effects on glutamate-stimulated increase in intraneuronal calcium. J Pharmacol Exp Ther 255:955–961

    CAS  PubMed  Google Scholar 

  6. Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM (2000) Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology 92:806–812

    Article  CAS  PubMed  Google Scholar 

  7. Patel PM, Drummond JC, Cole DJ, Kelly PJ, Watson M (1998) Isoflurane and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats. Anesth Analg 86:773–780

    CAS  PubMed  Google Scholar 

  8. Eldadah BA, Faden AI (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 17:811–829

    Article  CAS  PubMed  Google Scholar 

  9. Graham S, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109

    Article  CAS  PubMed  Google Scholar 

  10. Xia W, Han J, Huang G, Ying W (2010) Inflammation in ischaemic brain injury: current advances and future perspectives. Clin Exp Pharmacol Physiol 37:253–258

    Article  CAS  PubMed  Google Scholar 

  11. Smith AL, Hoff JT, Nielsen SL, Larson CP (1974) Barbiturate protection in acute focal cerebral ischemia. Stroke 5:1–7

    Article  CAS  PubMed  Google Scholar 

  12. Corkill G, Sivalingam S, Reitan JA, Gilroy BA, Helphrey MG (1978) Dose dependency of the post-insult protective effect of pentobarbital in the canine experimental stroke model. Stroke 9:10–12

    Article  CAS  PubMed  Google Scholar 

  13. Selman WR, Spetzler RF, Roski RA, Roessmann U, Crumrine R, Macko R (1982) Barbiturate coma in focal cerebral ischemia. Relationship of protection to timing of therapy. J Neurosurg 56:685–690

    Article  CAS  PubMed  Google Scholar 

  14. Yatsu FM, Diamond I, Graziano C, Lindquist P (1972) Experimental brain ischemia: protection from irreversible damage with a rapid-acting barbiturate (methohexital). Stroke 3:726–732

    Article  CAS  PubMed  Google Scholar 

  15. Bleyaert AL, Nemoto EM, Safar P, Stezoski SM, Mickell JJ, Moossy J, Rao GR (1978) Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology 49:390–398

    Article  CAS  PubMed  Google Scholar 

  16. Steen PA, Milde JH, Michenfelder JD (1979) No barbiturate protection in a dog model of complete cerebral ischemia. Ann Neurol 5:343–349

    Article  CAS  PubMed  Google Scholar 

  17. Todd MM, Chadwick HS, Shapiro HM, Dunlop BJ, Marshall LF, Dueck R (1982) The neurologic effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology 57:76–86

    Article  CAS  PubMed  Google Scholar 

  18. Gisvold SE, Safar P, Hendrickx HH, Rao G, Moossy J, Alexander H (1984) Thiopental treatment after global brain ischemia in pigtailed monkeys. Anesthesiology 60:88–96

    Article  CAS  PubMed  Google Scholar 

  19. Brain Resuscitation Clinical Trial I Study Group (1986) Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 314:397–403

    Article  Google Scholar 

  20. Zaidan JR, Klochany A, Martin WM, Ziegler JS, Harless DM, Andrews RB (1991) Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 74:406–411

    Article  CAS  PubMed  Google Scholar 

  21. Nussmeier NA, Arlund C, Slogoff S (1986) Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology 64:165–170

    Article  CAS  PubMed  Google Scholar 

  22. Sternau LL, Lust WD, Ricci AJ, Ratcheson R (1989) Role for gamma-aminobutyric acid in selective vulnerability in gerbils. Stroke 20:281–287

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz RD, Yu X, Katzman MR, Hayden-Hixson DM, Perry JM (1995) Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum. J Neurosci 15:529–539

    CAS  PubMed  Google Scholar 

  24. Schwartz RD, Huff RA, Yu X, Carter ML, Bishop M (1994) Postischemic diazepam is neuroprotective in the gerbil hippocampus. Brain Res 647:153–160

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz-Bloom RD, McDonough KJ, Chase PJ, Chadwick LE, Inglefield JR, Levin ED (1998) Long-term neuroprotection by benzodiazepine full versus partial agonists after transient cerebral ischemia in the gerbil. J Cereb Blood Flow Metab 18:548–558

    Article  CAS  PubMed  Google Scholar 

  26. Dowden J, Reid C, Dooley P, Corbett D (1999) Diazepam-induced neuroprotection: dissociating the effects of hypothermia following global ischemia. Brain Res 829:1–6

    Article  CAS  PubMed  Google Scholar 

  27. Sarnowska A, Beresewicz M, Zabłocka B, Domańska-Janik K (2009) Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects. Neurochem Int 55:164–173

    Article  CAS  PubMed  Google Scholar 

  28. Corbett D, Larsen J, Langdon KD (2008) Diazepam delays the death of hippocampal CA1 neurons following global ischemia. Exp Neurol 214:309–314

    Article  CAS  PubMed  Google Scholar 

  29. Aerden LA, Kessels FA, Rutten BP, Lodder J, Steinbusch HW (2004) Diazepam reduces brain lesion size in a photothrombotic model of focal ischemia in rats. Neurosci Lett 367:76–78

    Article  CAS  PubMed  Google Scholar 

  30. Lodder J, van Raak L, Hilton A, Hardy E, Kessels A, EGASIS Study Group (2006) Diazepam to improve acute stroke outcome: results of the early GABA-Ergic activation study in stroke trial. a randomized double-blind placebo-controlled trial. Cerebrovasc Dis 21:120–127

    Article  CAS  PubMed  Google Scholar 

  31. Rosenberg HC, Chiu TH (1981) Tolerance during chronic benzodiazepine treatment associated with decreased receptor binding. Eur J Pharmacol 70:453–460

    Article  CAS  PubMed  Google Scholar 

  32. Iwata M, Inoue S, Kawaguchi M, Furuya H (2012) Effects of diazepam and flumazenil on forebrain ischaemia in a rat model of benzodiazepine tolerance. Br J Anaesth 109:935–942

    Article  CAS  PubMed  Google Scholar 

  33. Chaulk D, Wells J, Evans S, Jackson D, Corbett D (2003) Long-term effects of clomethiazole in a model of global ischemia. Exp Neurol 182:476–482

    Article  CAS  PubMed  Google Scholar 

  34. Kuhmonen J, Pokorný J, Miettinen R, Haapalinna A, Jolkkonen J, Riekkinen P Sr, Sivenius J (1997) Neuroprotective effects of dexmedetomidine in the gerbil hippocampus after transient global ischemia. Anesthesiology 87:371–377

    Article  CAS  PubMed  Google Scholar 

  35. Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M (1993) Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 79:306–312

    Article  CAS  PubMed  Google Scholar 

  36. Matsumoto M, Zornow MH, Rabin BC, Maze M (1993) The alpha 2 adrenergic agonist, dexmedetomidine, selectively attenuates ischemia-induced increases in striatal norepinephrine concentrations. Brain Res 627:325–329

    Article  CAS  PubMed  Google Scholar 

  37. Engelhard K, Werner C, Kaspar S, Möllenberg O, Blobner M, Bachl M, Kochs E (2002) Effect of the alpha2-agonist dexmedetomidine on cerebral neurotransmitter concentrations during cerebral ischemia in rats. Anesthesiology 96:450–457

    Article  CAS  PubMed  Google Scholar 

  38. Kim HK, Zornow MH, Strnat MA, Maze M (1996) Dexmedetomidine does not attenuate increases in excitatory amino acids after transient global ischemia in the rabbit. J Neurosurg Anesthesiol 8:230–236

    Article  CAS  PubMed  Google Scholar 

  39. Eser O, Fidan H, Sahin O, Cosar M, Yaman M, Mollaoglu H, Songur A, Buyukbas S (2008) The influence of dexmedetomidine on ischemic rat hippocampus. Brain Res 1218:250–256

    Article  CAS  PubMed  Google Scholar 

  40. Engelhard K, Werner C, Eberspächer E, Bachl M, Blobner M, Hildt E, Hutzler P, Kochs E (2003) The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg 96:524–531

    CAS  PubMed  Google Scholar 

  41. Karlsson BR, Löberg EM, Steen PA (1995) Dexmedetomidine, a potent alpha 2-agonist, does not affect neuronal damage following severe forebrain ischaemia in the rat. Eur J Anaesthesiol 12:281–285

    CAS  PubMed  Google Scholar 

  42. Nakano T, Okamoto H (2009) Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats. J Anesth 23:378–384

    Article  PubMed  Google Scholar 

  43. Sulemanji DS, Dönmez A, Aldemir D, Sezgin A, Türkoglu S (2007) Dexmedetomidine during coronary artery bypass grafting surgery: is it neuroprotective?–A preliminary study. Acta Anaesthesiol Scand 51:1093–1098

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi S, Hamaguchi S, Mishio M, Okuda Y, Kitajima T (2000) Propofol prevents lipid peroxidation following transient forebrain ischemia in gerbils. Can J Anaesth 47:1025–1030

    Article  CAS  PubMed  Google Scholar 

  45. Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W (2012) Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One 7:e35324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Xi HJ, Zhang TH, Tao T, Song CY, Lu SJ, Cui XG, Yue ZY (2011) Propofol improved neurobehavioral outcome of cerebral ischemia-reperfusion rats by regulating Bcl-2 and Bax expression. Brain Res 1410:24–32

    Article  CAS  PubMed  Google Scholar 

  47. Engelhard K, Werner C, Eberspacher E, Pape M, Stegemann U, Kellermann K, Hollweck R, Hutzler P, Kochs E (2004) Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology 101:912–917

    Article  CAS  PubMed  Google Scholar 

  48. Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG (1997) Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol 14:320–326

    Article  CAS  PubMed  Google Scholar 

  49. Ito H, Watanabe Y, Isshiki A, Uchino H (1999) Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand 43:153–162

    Article  CAS  PubMed  Google Scholar 

  50. Gelb AW, Bayona NA, Wilson JX, Cechetto DF (2002) Propofol anesthesia compared to awake reduces infarct size in rats. Anesthesiology 96:1183–1190

    Article  CAS  PubMed  Google Scholar 

  51. Bayona NA, Gelb AW, Jiang Z, Wilson JX, Urquhart BL, Cechetto DF (2004) Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. Anesthesiology 100:1151–1159

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, Luo M, Li C, Wang G (2011) Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem 119:210–219

    Article  CAS  PubMed  Google Scholar 

  53. Wang HY, Wang GL, Yu YH, Wang Y (2009) The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats. Brain Res 1297:177–184

    Article  CAS  PubMed  Google Scholar 

  54. Bhardwaj A, Castro AF III, Alkayed NJ, Hurn PD, Kirsch JR (2001) Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke 32:1920–1925

    Article  CAS  PubMed  Google Scholar 

  55. Roach GW, Newman MF, Murkin JM, Martzke J, Ruskin A, Li J, Guo A, Wisniewski A, Mangano DT (1999) Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Anesthesiology 90:1255–1264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoki Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Inoue, S., Kawaguchi, M. (2015). Intravenous Anesthetics and Neuroprotection. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics