Skip to main content

Molecular Mechanism of Ischemic Damage to the Spinal Cord and Its Protection

  • Chapter
Neuroanesthesia and Cerebrospinal Protection

Abstract

One of the most fearful complications after thoracoabdominal aortic aneurysm surgery is spinal cord ischemia. Ischemic spinal cord damage is considered to occur through essentially the same mechanism as ischemic brain damage. While brain ischemia research generally focuses on vulnerable neurons such as those in the hippocampus, that on spinal cord ischemia usually focuses on motor neurons. Furthermore, ischemic damage to the long nerve fibers that comprise the conduction path in the spinal cord is also recognized as an important problem.

Delayed spinal cord damage may occur after surgery for thoracoabdominal aortic aneurysm. It is unknown as to whether delayed spinal cord damage in humans occurs through the same mechanism as it does in animal models. In rabbit models, the onset of delayed spinal cord damage is accompanied by considerable ischemia-related change in the gray matter of the spinal cord. In contrast, delayed spinal cord damage following surgery for thoracoabdominal aortic aneurysm is often resolved by improving spinal cord perfusion. This must be taken into account when extrapolating the results of animal studies to humans.

Free radicals appear to play an important role in both the pathogenesis of ischemia-reperfusion damage and the acquisition of ischemic tolerance. A large amount of free radicals causes cellular damage, while an appropriate amount plays an important role in signal transduction. This implies that treatment strategies to completely eliminate free radicals, even during ischemia-reperfusion, are not necessarily successful. Fine control of free radicals appears to be important for spinal cord protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taira Y, Marsala M (1996) Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Stroke 27:1850–1858

    Article  CAS  PubMed  Google Scholar 

  2. Marsala J, Kluchova D, Marsala M (1997) Spinal cord gray matter layers rich in NADPH diaphorase-positive neurons are refractory to ischemia-reperfusion-induced injury: a histochemical and silver impregnation study in rabbit. Exp Neurol 145:165–179

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto M, Iida Y, Wakamatsu H, Ohtake K, Nakakimura K, Xiong L, Sakabe T (1999) The effects of NG-nitro-L- arginine-methyl ester on neurologic and histopathologic outcome after transient spinal cord ischemia. Anesth Analg 89:696–702

    CAS  PubMed  Google Scholar 

  4. Marsala M, Vanicky I, Yaksh TL (1994) Effect of graded hypothermia (27 to 34 °C) on behavioral function, histopathology, and spinal blood flow after spinal ischemia in rat. Stroke 25:2038–2046

    Article  CAS  PubMed  Google Scholar 

  5. Follis F, Scremin OU, Blisard KS, Scremin AME, Pett SB, Scott WJ, Kessler RM, Wernly JA (1993) Selective vulnerability of white matter during spinal cord ischemia. J Cereb Blood Flow Metab 13:170–178

    Article  CAS  PubMed  Google Scholar 

  6. Zivin JA, DeGirolami U (1980) Spinal cord infarction: a highly reproducible stroke model. Stroke 11:200–202

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto M, Iida Y, Sakabe T, Sano T, Ishikawa T, Nakakimura K (1997) Mild and moderate hypothermia provide better protection than a burst-suppression dose of thiopental against ischemic spinal cord injury in rabbits. Anesthesiology 86:1120–1127

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs TP, Shohami E, Baze W, Burgard E, Gunderson C, Hallenbeck JM, Feuerstein G (1987) Deteriorating stroke model: histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbits. Stroke 18:741–750

    Article  CAS  PubMed  Google Scholar 

  9. Sakurai M, Hayashi T, Abe K, Sadahiro M, Tabayashi K (1998) Delayed and selective motor neuron death after transient spinal cord ischemia: a role of apoptosis? J Thorac Cardiovasc Surg 115:1310–1315

    Article  CAS  PubMed  Google Scholar 

  10. Kakinohana M, Kida K, Minamishima S, Atochin DN, Huang PL, Kaneki M, Ichinose F (2011) Delayed paraplegia after spinal cord ischemic injury requires caspase-3 activation in mice. Stroke 42:2302–2307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lapchak PA, Araujo DM, Weir CJ, Wei J, Zivin JA (2003) Effects of intrathecal administration of a cell permeant caspase inhibitor, boc-D-fluoromethylketone (BDFMK), on behavioral deficits following spinal cord ischemia: a dose-response analysis. Brain Res 959:183–190

    Article  CAS  PubMed  Google Scholar 

  12. Kiyoshima T, Fukuda S, Matsumoto M, Iida Y, Oka S, Nakakimura K, Sakabe T (2003) Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord ischemia in rabbits. Anesth Analg 96:839–846

    PubMed  Google Scholar 

  13. Matsumoto S, Matsumoto M, Yamashita A, Ohtake K, Ishida K, Morimoto Y, Sakabe T (2003) The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits. Anesth Analg 96:1777–1784

    Article  PubMed  Google Scholar 

  14. Matsui T, Mori T, Tateishi N, Kagamiishi Y, Satoh S, Katsube N, Morikawa E, Morimoto T, Ikuta F, Asano T (2002) Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part I: enhanced astrocytic synthesis of S-100β in the periinfarct area precedes delayed infarct expansion. J Cereb Blood Flow Metab 22:711–722

    Article  CAS  PubMed  Google Scholar 

  15. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Haas FJ, de Boer A, Boezeman EH, Aarts LP (1999) The relationship between evoked potentials and measurements of S-100 protein in cerebrospinal fluid during and after thoracoabdominal aortic aneurysm surgery. J Vasc Surg 30:293–300

    Article  PubMed  Google Scholar 

  16. Smith PD, Puskas F, Meng X, Lee JH, Cleveland JC Jr, Weyant MJ, Fullerton DA, Reece TB (2012) The evolution of chemokine release supports a bimodal mechanism of spinal cord ischemia and reperfusion injury. Circulation 126:S110–S117

    Article  CAS  PubMed  Google Scholar 

  17. Takeda M, Kawaguchi M, Kumatoriya T, Horiuchi T, Watanabe K, Inoue S, Konishi N, Furuya H (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine 36:1919–1924

    Article  PubMed  Google Scholar 

  18. Stys PK (1998) Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 18:2–25

    Article  CAS  PubMed  Google Scholar 

  19. McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  CAS  PubMed  Google Scholar 

  20. Kurita N, Kawaguchi M, Kakimoto M, Yamamoto Y, Inoue S, Nakamura M, Konishi N, Patel PM, Furuya H (2006) Reevaluation of gray and white matter injury after spinal cord ischemia in rabbits. Anesthesiology 105:305–312

    Article  PubMed  Google Scholar 

  21. Wakamatsu H, Matsumoto M, Nakakimura K, Sakabe T (1999) The effects of moderate hypothermia and intrathecal tetracaine on glutamate concentrations of intrathecal dialysate and neurologic and histopathologic outcome in transient spinal cord ischemia in rabbits. Anesth Analg 88:56–62

    CAS  PubMed  Google Scholar 

  22. Marsala M, Vanicky I, Galik J, Radonak J, Kundrat I, Marsala J (1993) Panmyelic epidural cooling protects against ischemic spinal damage. J Surg Res 55:21–31

    Article  CAS  PubMed  Google Scholar 

  23. Tabayashi K, Motoyoshi N, Akimoto H, Tsuru Y, Sakurai M, Itoh T, Fukuju T, Iguchi A (2002) Epidural cooling for regional spinal cord hypothermia during most or all of descending thoracic or thoracoabdominal aneurysm repair. Acta Chir Belg 102:224–229

    CAS  PubMed  Google Scholar 

  24. Munyao N, Kaste M, Lindsberg PJ (1998) Tolerization against loss of neuronal function after ischemia-reperfusion injury. Neuroreport 9:321–325

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto M, Ohtake K, Wakamatsu H, Oka S, Kiyoshima T, Nakakimura K, Sakabe T (2001) The time course of acquisition of ischemic tolerance and induction of heat shock protein 70 after a brief period of ischemia in the spinal cord in rabbits. Anesth Analg 92:418–423

    Article  CAS  PubMed  Google Scholar 

  26. de Haan P, Vanicky I, Jacobs MJHM, Bakker O, Lips J, Meylaerts S, Kalkman CJ (2000) Effect of ischemic pretreatment on heat shock protein 72, neurologic outcome, and histopathologic outcome in a rabbit model of spinal cord ischemia. J Thorac Cardiovasc Surg 120:513–519

    Article  PubMed  Google Scholar 

  27. Sang H, Cao L, Qiu P, Xiong L, Wang R, Yan G (2006) Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology 105:953–960

    Article  CAS  PubMed  Google Scholar 

  28. Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T (2002) Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology 96:907–912

    Article  PubMed  Google Scholar 

  29. Dong HL, Zhang Y, Su BX, Zhu ZH, Gu QH, Sang HF, Xiong L (2010) Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury: a newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology 112:881–891

    Article  PubMed  Google Scholar 

  30. Drummond JC, Moore SS (1989) The influence of dextrose administration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology 70:64–70

    Article  CAS  PubMed  Google Scholar 

  31. Nagamizo D, Tsuruta S, Matsumoto M, Matayoshi H, Yamashita A, Sakabe T (2007) Tight glycemic control by insulin, started in the preischemic, but not postischemic, period, protects against ischemic spinal cord injury in rabbits. Anesth Analg 105:1397–1403

    Article  CAS  PubMed  Google Scholar 

  32. de Haan P, Kalkman CJ, Jacobs MJ (2001) Pharmacologic neuroprotection in experimental spinal cord ischemia: a systematic review. J Neurosurg Anesthesiol 13:3–12

    Article  PubMed  Google Scholar 

  33. Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, Genc S, Genc K, Sagiroglu E, Cerami A, Brines M (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99:2258–2263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Huang Y, Xie K, Li J, Xu N, Gong G, Wang G, Yu Y, Dong H, Xiong L (2011) Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Res 1378:125–136

    Article  CAS  PubMed  Google Scholar 

  35. Kakinohana M, Marsala M, Carter C, Davison JK, Yaksh TL (2003) Neuraxial morphine may trigger transient motor dysfunction after a noninjurious interval of spinal cord ischemia: a clinical and experimental study. Anesthesiology 98:862–870

    Article  CAS  PubMed  Google Scholar 

  36. Shirasawa Y, Matsumoto M, Yoshimura M, Yamashita A, Fukuda S, Ishida K, Sakabe T (2009) Does high-dose opioid anesthesia exacerbate ischemic spinal cord injury in rabbits? J Anesth 23:242–248

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mishiya Matsumoto M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matsumoto, M., Yamashita, A. (2015). Molecular Mechanism of Ischemic Damage to the Spinal Cord and Its Protection. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics