Skip to main content

Role of Transcranial Doppler Ultrasonography in Neuroanesthesia

  • Chapter
Neuroanesthesia and Cerebrospinal Protection

Abstract

Transcranial Doppler ultrasonography (TCD) allows easy bedside monitoring of cerebral circulation and can be used repeatedly and continuously at low cost. A high level of skill is required to obtain a sonogram of an individual blood vessel through the transtemporal bone window with this technique. However, the use of transcranial color duplex imaging and the power motion mode has further facilitated the measurement of blood flow velocity in the brain by this method. Cerebral autoregulation and cerebrovascular CO2 reactivity can be determined by TCD and are useful prognostic indicators in patients with cerebral infarction, subarachnoid hemorrhage, or head trauma. Transcranial Doppler ultrasonography is also suitable in evaluating cerebrovascular stenosis, vasospasm following subarachnoid hemorrhage, vascular patency following cerebral infarction and cerebral circulation in patients with intracranial hypertension. Furthermore, microemboli that have disseminated to the brain during carotid endarterectomy or cardiovascular surgery can be detected by TCD as microembolic signals. New techniques to differentiate between gaseous and solid microemboli are currently under development. We anticipate that the utility of TCD as a useful bedside monitoring tool for evaluating cerebral circulation will become increasingly recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    Article  CAS  PubMed  Google Scholar 

  2. Itoh T, Matsumoto M, Handa N et al (1993) Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography. Stroke 24(8):1192–1195

    Article  CAS  PubMed  Google Scholar 

  3. Giller CA, Bowman G, Dyer H et al (1993) Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 32(5):737–742

    Article  CAS  PubMed  Google Scholar 

  4. Valdueza JM, Balzer JO, Villringer A et al (1997) Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. AJNR Am J Neuroradiol 18(10):1929–1934

    CAS  PubMed  Google Scholar 

  5. Serrador JM, Picot PA, Rutt BK et al (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31(7):1672–1678

    Article  CAS  PubMed  Google Scholar 

  6. Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99

    Article  PubMed  Google Scholar 

  7. Tiecks FP, Lam AM, Aaslid R et al (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26(6):1014–1019

    Article  CAS  PubMed  Google Scholar 

  8. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2):161–192

    CAS  PubMed  Google Scholar 

  9. Lucas SJ, Tzeng YC, Galvin SD et al (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55(3):698–705

    Article  CAS  PubMed  Google Scholar 

  10. Willie CK, Colino FL, Bailey DM et al (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 196(2):221–237

    Article  CAS  PubMed  Google Scholar 

  11. Tiecks FP, Douville C, Byrd S et al (1996) Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke 27(7):1177–1182

    Article  CAS  PubMed  Google Scholar 

  12. Smielewski P, Czosnyka M, Kirkpatrick P et al (1996) Assessment of cerebral autoregulation using carotid artery compression. Stroke 27(12):2197–2203

    Article  CAS  PubMed  Google Scholar 

  13. Piechnik SK, Yang X, Czosnyka M et al (1999) The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg 89(4):944–949

    CAS  PubMed  Google Scholar 

  14. Dagal A, Lam AM (2009) Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol 22(5):547–552

    Article  PubMed  Google Scholar 

  15. Soehle M, Czosnyka M, Pickard JD et al (2004) Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg 98(4):1133–1139

    Article  PubMed  Google Scholar 

  16. Aries MJ, Elting JW, De Keyser J et al (2010) Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41(11):2697–2704

    Article  PubMed  Google Scholar 

  17. Czosnyka M, Smielewski P, Kirkpatrick P et al (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27(10):1829–1834

    Article  CAS  PubMed  Google Scholar 

  18. Czosnyka M, Smielewski P, Lavinio A et al (2008) An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg 106(1):234–239

    Article  PubMed  Google Scholar 

  19. Lam JM, Hsiang JN, Poon WS (1997) Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg 86(3):438–445

    Article  CAS  PubMed  Google Scholar 

  20. Brian JE Jr (1998) Carbon dioxide and the cerebral circulation. Anesthesiology 88(5):1365–1386

    Article  PubMed  Google Scholar 

  21. Serrador JM, Sorond FA, Vyas M et al (2005) Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains. J Appl Physiol 98(1):151–159

    Article  PubMed  Google Scholar 

  22. Reichmuth KJ, Dopp JM, Barczi SR et al (2009) Impaired vascular regulation in patients with obstructive sleep apnea: effects of continuous positive airway pressure treatment. Am J Respir Crit Care Med 180(11):1143–1150

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xie A, Skatrud JB, Khayat R et al (2005) Cerebrovascular response to carbon dioxide in patients with congestive heart failure. Am J Respir Crit Care Med 172(3):371–378

    Article  PubMed  Google Scholar 

  24. Widder B, Kleiser B, Krapf H (1994) Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke 25(10):1963–1967

    Article  CAS  PubMed  Google Scholar 

  25. Wijnhoud AD, Koudstaal PJ, Dippel DW (2006) Relationships of transcranial blood flow Doppler parameters with major vascular risk factors: TCD study in patients with a recent TIA or nondisabling ischemic stroke. J Clin Ultrasound 34(2):70–76

    Article  PubMed  Google Scholar 

  26. Silvestrini M, Vernieri F, Pasqualetti P et al (2000) Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283(16):2122–2127

    Article  CAS  PubMed  Google Scholar 

  27. Markus H, Cullinane M (2001) Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124(3):457–467

    Article  CAS  PubMed  Google Scholar 

  28. Vernieri F, Pasqualetti P, Matteis M et al (2001) Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion. Stroke 32(7):1552–1558

    Article  CAS  PubMed  Google Scholar 

  29. Klingelhofer J, Sander D (1992) Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages. Stroke 23(7):962–966

    Article  CAS  PubMed  Google Scholar 

  30. Skinner H, Mackaness C, Bedforth N et al (2005) Cerebral haemodynamics in patients with chronic renal failure: effects of haemodialysis. Br J Anaesth 94(2):203–205

    Article  CAS  PubMed  Google Scholar 

  31. Ishida K, Uchida M, Utada K et al (2011) Cerebrovascular carbon dioxide reactivity during general anesthesia in the patients with chronic renal failure. J Neurosurg Anesthesiol 23(4):459

    Google Scholar 

  32. Kawata R, Nakakimura K, Matsumoto M et al (1998) Cerebrovascular CO2 reactivity during anesthesia in patients with diabetes mellitus and peripheral vascular disease. Anesthesiology 89(4):887–893

    Article  CAS  PubMed  Google Scholar 

  33. Kadoi Y, Hinohara H, Kunimoto F et al (2003) Diabetic patients have an impaired cerebral vasodilatory response to hypercapnia under propofol anesthesia. Stroke 34(10):2399–2403

    Article  PubMed  Google Scholar 

  34. Kadoi Y, Kawauchi C, Kuroda M et al (2011) Association between cerebrovascular carbon dioxide reactivity and postoperative short-term and long-term cognitive dysfunction in patients with diabetes mellitus. J Anesth 25(5):641–647

    Article  PubMed  Google Scholar 

  35. Feldmann E, Wilterdink JL, Kosinski A et al (2007) The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. Neurology 68(24):2099–2106

    Article  CAS  PubMed  Google Scholar 

  36. Topcuoglu MA (2012) Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem 123(Suppl 2):39–51

    Article  PubMed  Google Scholar 

  37. Demchuk AM, Burgin WS, Christou I et al (2001) Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke 32(1):89–93

    Article  CAS  PubMed  Google Scholar 

  38. Nedelmann M, Stolz E, Gerriets T et al (2009) Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke. Stroke 40(10):3238–3244

    Article  PubMed  Google Scholar 

  39. Austen WG, Howry DH (1965) Ultrasound as a method to detect bubbles or particulate matter in the arterial line during cardiopulmonary bypass. J Surg Res 5:283–284

    Article  CAS  PubMed  Google Scholar 

  40. Padayachee TS, Gosling RG, Bishop CC et al (1986) Monitoring middle cerebral artery blood velocity during carotid endarterectomy. Br J Surg 73(2):98–100

    Article  CAS  PubMed  Google Scholar 

  41. Spencer MP, Thomas GI, Nicholls SC et al (1990) Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke 21(3):415–423

    Article  CAS  PubMed  Google Scholar 

  42. Stroke (1995) Basic identification criteria of Doppler microembolic signals. Consensus Committee of the Ninth International Cerebral Hemodynamic Symposium. Stroke 26(6):1123

    Google Scholar 

  43. Ringelstein EB, Droste DW, Babikian VL et al (1998) Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke 29(3):725–729

    Article  CAS  PubMed  Google Scholar 

  44. Russell D, Brucher R (2002) Online automatic discrimination between solid and gaseous cerebral microemboli with the first multi-frequency transcranial Doppler. Stroke 33(8):1975–1980

    Article  CAS  PubMed  Google Scholar 

  45. Hanzawa K, Furui E, Ohzeki H et al (1998) Frequency analysis of high intensity transient signals in CPB can distinguishes solid embolic signals from gaseous signals. Ann Thorac Surg 66:1490

    Google Scholar 

  46. Moritz S, Kasprzak P, Arlt M et al (2007) Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 107(4):563–569

    Article  PubMed  Google Scholar 

  47. Ackerstaff RG, Moons KG, van de Vlasakker CJ et al (2000) Association of intraoperative transcranial doppler monitoring variables with stroke from carotid endarterectomy. Stroke 31(8):1817–1823

    Article  CAS  PubMed  Google Scholar 

  48. Levi CR, O’Malley HM, Fell G et al (1997) Transcranial Doppler detected cerebral microembolism following carotid endarterectomy. High microembolic signal loads predict postoperative cerebral ischaemia. Brain 120(4):621–629

    Article  PubMed  Google Scholar 

  49. Sloan MA, Alexandrov AV, Tegeler CH et al (2004) Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 62(9):1468–1481

    Article  CAS  PubMed  Google Scholar 

  50. Clark RE, Brillman J, Davis DA et al (1995) Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J Thorac Cardiovasc Surg 109(2):249–258

    Article  CAS  PubMed  Google Scholar 

  51. Braekken SK, Reinvang I, Russell D et al (1998) Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting. J Neurol Neurosurg Psychiatry 65(4):573–576

    Article  CAS  PubMed  Google Scholar 

  52. Kruis RW, Vlasveld FA, Van Dijk D (2010) The (un)importance of cerebral microemboli. Semin Cardiothorac Vasc Anesth 14(2):111–118

    Article  PubMed  Google Scholar 

  53. Brooker RF, Brown WR, Moody DM et al (1998) Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg 65(6):1651–1655

    Article  CAS  PubMed  Google Scholar 

  54. Gohara T, Ishida K, Nakakimura K et al (2010) Temporal profiles of aquaporin 4 expression and astrocyte response in the process of brain damage in fat embolism model in rats. J Anesth 24(2):225–233

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ishida, K., Yamashita, A., Matsumoto, M. (2015). Role of Transcranial Doppler Ultrasonography in Neuroanesthesia. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics