Skip to main content

Abstract

Anesthetic agents can alter cerebral hemodynamics, which can improve or worsen intracranial conditions during surgical procedures. The effects of opioids and other adjuvant analgesics on cerebral hemodynamics are presented in this chapter.

Opioids: Although reports differ, cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) remain unaltered or are modestly increased with the administration of clinical doses of opioids, but supraclinical doses of opioids decrease both CBF and CMRO2. However, the cerebrovascular response to a change in mean arterial pressure (MAP) or arterial carbon dioxide tension is unaffected by opioids. Opioids do not increase intracranial pressure (ICP) directly. These findings suggest that clinical doses of opioids can be used safely for neuroanesthesia. The impact of opioids on an ischemic cerebrospinal injury is also discussed.

Adjuvant analgesics: A substantial dose of lidocaine may decrease CMRO2. Indomethacin, but not other cyclooxygenase inhibitors, decreases CBF and ICP without decreasing MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moyer JH, Pontius R, Morris G, Hershberger R (1957) Effect of morphine and n-allylnormorphine on cerebral hemodynamics and oxygen metabolism. Circulation 15:379–384

    Article  CAS  PubMed  Google Scholar 

  2. Jobes DR, Kennell EM, Bush GL et al (1977) Cerebral blood flow and metabolism during morphine–nitrous oxide anesthesia in man. Anesthesiology 47:16–18

    Article  CAS  PubMed  Google Scholar 

  3. Jobes DR, Kennell E, Bitner R, Swenson E, Wollman H (1975) Effects of morphine-nitrous oxide anesthesia on cerebral autoregulation. Anesthesiology 42:30–34

    Article  CAS  PubMed  Google Scholar 

  4. Hanel F, Werner C, von Knobelsdorff G, Schulte am Esch J (1997) The effects of fentanyl and sufentanil on cerebral hemodynamics. J Neurosurg Anesthesiol 9:223–227

    Article  CAS  PubMed  Google Scholar 

  5. Kolbitsch C, Hormann C, Schmidauer C, Ortler M, Burtscher J, Benzer A (1997) Hypocapnia reverses the fentanyl-induced increase in cerebral blood flow velocity in awake humans. J Neurosurg Anesthesiol 9:313–315

    Article  CAS  PubMed  Google Scholar 

  6. Trindle MR, Dodson BA, Rampil IJ (1993) Effects of fentanyl versus sufentanil in equianesthetic doses on middle cerebral artery blood flow velocity. Anesthesiology 78:454–460

    Article  CAS  PubMed  Google Scholar 

  7. Firestone LL, Gyulai F, Mintun M, Adler LJ, Urso K, Winter PM (1996) Human brain activity response to fentanyl imaged by positron emission tomography. Anesth Analg 82:1247–1251

    CAS  PubMed  Google Scholar 

  8. Carlsson C, Smith DS, Keykhah MM, Englebach I, Harp JR (1982) The effects of high-dose fentanyl on cerebral circulation and metabolism in rats. Anesthesiology 57:375–380

    Article  CAS  PubMed  Google Scholar 

  9. Sebel PS, Bovill JG, Wauquier A, Rog P (1981) Effects of high-dose fentanyl anesthesia on the electroencephalogram. Anesthesiology 55:203–211

    Article  CAS  PubMed  Google Scholar 

  10. McPherson RW, Traystman RJ (1984) Fentanyl and cerebral vascular responsivity in dogs. Anesthesiology 60:180–186

    Article  CAS  PubMed  Google Scholar 

  11. Ostapkovich ND, Baker KZ, Fogarty-Mack P, Sisti MB, Young WL (1998) Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2O and fentanyl/N2O anesthesia. Anesthesiology 89:358–363

    Article  CAS  PubMed  Google Scholar 

  12. Todd MM, Warner DS, Sokoll MD et al (1993) A prospective, comparative trial of three anesthetics for elective supratentorial craniotomy. Propofol/fentanyl, isoflurane/nitrous oxide, and fentanyl/nitrous oxide. Anesthesiology 78:1005–1020

    Article  CAS  PubMed  Google Scholar 

  13. Guy J, Hindman BJ, Baker KZ et al (1997) Comparison of remifentanil and fentanyl in patients undergoing craniotomy for supratentorial space-occupying lesions. Anesthesiology 86:514–524

    Article  CAS  PubMed  Google Scholar 

  14. Jung R, Shah N, Reinsel R et al (1990) Cerebrospinal fluid pressure in patients with brain tumors: impact of fentanyl versus alfentanil during nitrous oxide-oxygen anesthesia. Anesth Analg 71:419–422

    Article  CAS  PubMed  Google Scholar 

  15. Jamali S, Ravussin P, Archer D, Goutallier D, Parker F, Ecoffey C (1996) The effects of bolus administration of opioids on cerebrospinal fluid pressure in patients with supratentorial lesions. Anesth Analg 82:600–606

    CAS  PubMed  Google Scholar 

  16. Mayberg TS, Lam AM, Eng CC, Laohaprasit V, Winn HR (1993) The effect of alfentanil on cerebral blood flow velocity and intracranial pressure during isoflurane-nitrous oxide anesthesia in humans. Anesthesiology 78:288–294

    Article  CAS  PubMed  Google Scholar 

  17. Olsen KS, Juul N, Cold GE (2005) Effect of alfentanil on intracranial pressure during propofol-fentanyl anesthesia for craniotomy. A randomized prospective dose-response study. Acta Anaesthesiol Scand 49:445–452

    Article  CAS  PubMed  Google Scholar 

  18. McPherson RW, Krempasanka E, Eimerl D, Traystman RJ (1985) Effects of alfentanil on cerebral vascular reactivity in dogs. Br J Anaesth 57:1232–1238

    Article  CAS  PubMed  Google Scholar 

  19. Warner DS, Hindman BJ, Todd MM et al (1996) Intracranial pressure and hemodynamic effects of remifentanil versus alfentanil in patients undergoing supratentorial craniotomy. Anesth Analg 83:348–353

    CAS  PubMed  Google Scholar 

  20. Mayer N, Weinstabl C, Podreka I, Spiss CK (1990) Sufentanil does not increase cerebral blood flow in healthy human volunteers. Anesthesiology 73:240–243

    Article  CAS  PubMed  Google Scholar 

  21. Werner C, Hoffman WE, Baughman VL, Albrecht RF, Schulte J (1991) Effects of sufentanil on cerebral blood flow, cerebral blood flow velocity, and metabolism in dogs. Anesth Analg 72:177–181

    Article  CAS  PubMed  Google Scholar 

  22. Jamali S, Archer D, Ravussin P, Bonnafous M, David P, Ecoffey C (1997) The effect of skull-pin insertion on cerebrospinal fluid pressure and cerebral perfusion pressure: influence of sufentanil and fentanyl. Anesth Analg 84:1292–1296

    CAS  PubMed  Google Scholar 

  23. Weinstabl C, Mayer N, Richling B, Czech T, Spiss CK (1991) Effect of sufentanil on intracranial pressure in neurosurgical patients. Anaesthesia 46:837–840

    Article  CAS  PubMed  Google Scholar 

  24. Werner C, Kochs E, Bause H, Hoffman WE, Schulte am Esch J (1995) Effects of sufentanil on cerebral hemodynamics and intracranial pressure in patients with brain injury. Anesthesiology 83:721–726

    Article  CAS  PubMed  Google Scholar 

  25. Engelhard K, Reeker W, Kochs E, Werner C (2004) Effect of remifentanil on intracranial pressure and cerebral blood flow velocity in patients with head trauma. Acta Anaesthesiol Scand 48:396–399

    Article  CAS  PubMed  Google Scholar 

  26. Lagace A, Karsli C, Luginbuehl I, Bissonnette B (2004) The effect of remifentanil on cerebral blood flow velocity in children anesthetized with propofol. Paediatr Anaesth 14:861–865

    Article  PubMed  Google Scholar 

  27. Wagner KJ, Willoch F, Kochs EF et al (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94:732–739

    Article  CAS  PubMed  Google Scholar 

  28. Lorenz IH, Kolbitsch C, Hormann C et al (2002) The influence of nitrous oxide and remifentanil on cerebral hemodynamics in conscious human volunteers. Neuroimage 17:1056–1064

    Article  PubMed  Google Scholar 

  29. Lorenz IH, Kolbitsch C, Schocke M et al (2000) Low-dose remifentanil increases regional cerebral blood flow and regional cerebral blood volume, but decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Br J Anaesth 85:199–204

    Article  CAS  PubMed  Google Scholar 

  30. Klimscha W, Ullrich R, Nasel C et al (2003) High-dose remifentanil does not impair cerebrovascular carbon dioxide reactivity in healthy male volunteers. Anesthesiology 99:834–840

    Article  CAS  PubMed  Google Scholar 

  31. Paris A, Scholz J, von Knobelsdorff G, Tonner PH, Schulte am Esch J (1998) The effect of remifentanil on cerebral blood flow velocity. Anesth Analg 87:569–573

    CAS  PubMed  Google Scholar 

  32. Engelhard K, Werner C, Mollenberg O, Kochs E (2001) Effects of remifentanil/propofol in comparison with isoflurane on dynamic cerebrovascular autoregulation in humans. Acta Anaesthesiol Scand 45:971–976

    Article  CAS  PubMed  Google Scholar 

  33. Baker KZ, Ostapkovich N, Sisti MB, Warner DS, Young WL (1997) Intact cerebral blood flow reactivity during remifentanil/nitrous oxide anesthesia. J Neurosurg Anesthesiol 9:134–140

    Article  CAS  PubMed  Google Scholar 

  34. Murphy EJ (2005) Acute pain management pharmacology for the patient with concurrent renal or hepatic disease. Anaesth Intensive Care 33:311–322

    CAS  PubMed  Google Scholar 

  35. Kapila A, Glass PS, Jacobs JR et al (1995) Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology 83:968–975

    Article  CAS  PubMed  Google Scholar 

  36. Sakabe T, Maekawa T, Ishikawa T, Takeshita H (1974) The effects of lidocaine on canine cerebral metabolism and circulation related to the electroencephalogram. Anesthesiology 40:433–441

    Article  CAS  PubMed  Google Scholar 

  37. Jensen K, Kjaergaard S, Malte E, Bunemann L, Therkelsen K, Knudsen F (1996) Effect of graduated intravenous and standard rectal doses of indomethacin on cerebral blood flow in healthy volunteers. J Neurosurg Anesthesiol 8:111–116

    Article  CAS  PubMed  Google Scholar 

  38. Bundgaard H, Jensen K, Cold GE, Bergholt B, Frederiksen R, Pless S (1996) Effects of perioperative indomethacin on intracranial pressure, cerebral blood flow, and cerebral metabolism in patients subjected to craniotomy for cerebral tumors. J Neurosurg Anesthesiol 8:273–279

    Article  CAS  PubMed  Google Scholar 

  39. Baskin DS, Hosobuchi Y (1981) Naloxone reversal of ischaemic neurological deficits in man. Lancet 2:272–275

    Article  CAS  PubMed  Google Scholar 

  40. Kofke WA, Garman RH, Garman R, Rose ME (1999) Opioid neurotoxicity: fentanyl-induced exacerbation of cerebral ischemia in rats. Brain Res 818:326–334

    Article  CAS  PubMed  Google Scholar 

  41. Acher CW, Wynn MM (1998) Multifactoral nature of spinal cord circulation. Semin Thorac Cardiovasc Surg 10:7–10

    Article  CAS  PubMed  Google Scholar 

  42. Kakinohana M, Marsala M, Carter C, Davison JK, Yaksh TL (2003) Neuraxial morphine may trigger transient motor dysfunction after a noninjurious interval of spinal cord ischemia: a clinical and experimental study. Anesthesiology 98:862–870

    Article  CAS  PubMed  Google Scholar 

  43. Kakinohana M, Nakamura S, Fuchigami T, Davison KJ, Marsala M, Sugahara K (2006) Mu and delta, but not kappa, opioid agonists induce spastic paraparesis after a short period of spinal cord ischaemia in rats. Br J Anaesth 96:88–94

    Article  CAS  PubMed  Google Scholar 

  44. Cole DJ, Drummond JC, Shapiro HM, Hertzog RE, Brauer FS (1989) The effect of fentanyl anesthesia and intrathecal naloxone on neurologic outcome following spinal cord injury in the rat. Anesthesiology 71:426–430

    Article  CAS  PubMed  Google Scholar 

  45. Shirasawa Y, Matsumoto M, Yoshimura M et al (2009) Does high-dose opioid anesthesia exacerbate ischemic spinal cord injury in rabbits? J Anesth 23:242–248

    Article  PubMed  Google Scholar 

  46. Astrup J, Sorensen PM, Sorensen HR (1981) Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital, and lidocaine. Anesthesiology 55:263–268

    Article  CAS  PubMed  Google Scholar 

  47. Donegan MF, Bedford RF (1980) Intravenously administered lidocaine prevents intracranial hypertension during endotracheal suctioning. Anesthesiology 52:516–518

    Article  CAS  PubMed  Google Scholar 

  48. Bedford RF, Persing JA, Pobereskin L, Butler A (1980) Lidocaine or thiopental for rapid control of intracranial hypertension? Anesth Analg 59:435–437

    CAS  PubMed  Google Scholar 

  49. Eriksson S, Hagenfeldt L, Law D, Patrono C, Pinca E, Wennmalm A (1983) Effect of prostaglandin synthesis inhibitors on basal and carbon dioxide stimulated cerebral blood flow in man. Acta Physiol Scand 117:203–211

    Article  CAS  PubMed  Google Scholar 

  50. Rasmussen M, Tankisi A, Cold GE (2004) The effects of indomethacin on intracranial pressure and cerebral haemodynamics in patients undergoing craniotomy: a randomised prospective study. Anaesthesia 59:229–236

    Article  CAS  PubMed  Google Scholar 

  51. Jensen K, Freundlich M, Bunemann L, Therkelsen K, Hansen H, Cold GE (1993) The effect of indomethacin upon cerebral blood flow in healthy volunteers. The influence of moderate hypoxia and hypercapnia. Acta Neurochir (Wien) 124:114–119

    Article  CAS  Google Scholar 

  52. Yoshitani K, Kawaguchi M, Tatsumi K, Sasaoka N, Kurumatani N, Furuya H (2004) Intravenous administration of flurbiprofen does not affect cerebral blood flow velocity and cerebral oxygenation under isoflurane and propofol anesthesia. Anesth Analg 98:471–476, table of contents

    Article  CAS  PubMed  Google Scholar 

  53. Hougaard K, Nilsson B, Wieloch T (1983) Fatty acid cyclo-oxygenase inhibitors and the regulation of cerebral blood flow. Acta Physiol Scand 117:585–587

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Yoshida M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yoshida, T., Kamiya, Y., Kohno, T. (2015). Opioids and Adjuvant Drugs. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics