Skip to main content

Strategies to Assess and Minimize Right Heart Failure After Left Ventricular Assist Device Implantation

  • Chapter
  • First Online:

Abstract

Objective: Despite the positive effects of decreased right ventricular afterload after implantation of a left ventricular assist device, the right ventricle may also sustain negative effects through changes in position of the interventricular septum and perioperative tricuspid regurgitation. Right ventricular failure, which occurs in 20–50 % of patients after left ventricular assist device implantation, is associated with substantial operative mortality and morbidity. Methods: This article reviews the pathology of and risk factors and management strategies for right ventricle failure after left ventricular assist device implantation. Results: Risk factors are female gender, non-ischemic cardiomyopathy, and preoperative mechanical support or intra-aortic balloon pumping; however, the significance of these findings was limited. Risk scoring systems have been developed to quantify this risk. Inotropes that induce pulmonary vasodilation, e.g., milrinone, accompanied by inotropes that increase systolic blood pressure, i.e., epinephrine, for coronary perfusion, are effective treatments for right ventricular failure. A specific pulmonary vasodilator, such as inhaled nitric oxide, which reduces pulmonary vascular resistance and increases device flow, is another important component of therapy. Because valvular pathologies can complicate postoperative management, correction of tricuspid regurgitation is necessary to decrease venous congestion and improve right ventricle function. Conclusions: Meticulous attention should be paid to optimizing preload, afterload, and contractility in patients with preexisting right ventricular dysfunction in order to prevent right ventricle failure after left ventricular assist device implantation. For intraoperative right ventricle failure, alternative measures of mechanical support, including a right ventricular assist device as a last resort, are used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  PubMed  CAS  Google Scholar 

  2. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  PubMed  CAS  Google Scholar 

  3. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    Article  PubMed  Google Scholar 

  4. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  Google Scholar 

  5. Fitzpatrick 3rd JR, Frederick JR, Hsu VM, Hiesinger W, McCormick RC, Kozin ED, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137:971–7.

    Article  PubMed  Google Scholar 

  6. Patel ND, Weiss ES, Schaffer J, Ullrich SL, Rivard DC, Shah AS et al. Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile Heart Mate I and axial-flow Heart Mate II devices. Ann Thorac Surg. 2008;86:832–40. Discussion – 40.

    Google Scholar 

  7. Hennig F, Stepanenko AV, Lehmkuhl HB, Kukucka M, Dandel M, Krabatsch T, et al. Neurohumoral and inflammatory markers for prediction of right ventricular failure after implantation of a left ventricular assist device. Gen Thorac Cardiovasc Surg. 2009;59:19–24.

    Article  Google Scholar 

  8. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    Article  PubMed  Google Scholar 

  9. Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, Jansz P, et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30:888–95.

    PubMed  Google Scholar 

  10. Santambrogio L, Bianchi T, Fuardo M, Gazzoli F, Veronesi R, Braschi A, et al. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact Cardiovasc Thorac Surg. 2006;5:379–82.

    Article  PubMed  Google Scholar 

  11. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    Article  PubMed  Google Scholar 

  12. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91.

    Article  PubMed  Google Scholar 

  13. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham Jr TP. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1:7–21.

    Article  PubMed  CAS  Google Scholar 

  14. Walker LA, Buttrick PM. The right ventricle: biologic insights and response to disease. Curr Cardiol Rev. 2009;5:22–8.

    Article  PubMed  Google Scholar 

  15. Kevin LG, Barnard M. Right ventricular failure. Oxford J. 2007;7(3):89–94.

    Google Scholar 

  16. Pfisterer M. Right ventricular involvement in myocardial infarction and cardiogenic shock. Lancet. 2003;362:392–4.

    Article  PubMed  Google Scholar 

  17. John R, Lee S, Eckman P, Liao K. Right ventricular failure–a continuing problem in patients with left ventricular assist device support. J Cardiovasc Transl Res. 2010;3:604–11.

    Article  PubMed  Google Scholar 

  18. Thunberg CA, Gaitan BD, Arabia FA, Cole DJ, Grigore AM. Ventricular assist devices today and tomorrow. J Cardiothorac Vasc Anesth. 2010;24:656–80.

    Article  PubMed  Google Scholar 

  19. Lee S, Kamdar F, Madlon-Kay R, Boyle A, Colvin-Adams M, Pritzker M, et al. Effects of the Heart Mate II continuous-flow left ventricular assist device on right ventricular function. J Heart Lung Transplant. 2010;29:209–15.

    Article  PubMed  Google Scholar 

  20. Greyson CR. Pathophysiology of right ventricular failure. Crit Care Med. 2008 Jan;36(1 Suppl):S57–65.

    Article  PubMed  Google Scholar 

  21. Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  22. Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5.

    Article  PubMed  Google Scholar 

  23. Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106(12 Suppl. 1):I198–I202.

    Google Scholar 

  24. Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27:1275–81.

    Article  PubMed  Google Scholar 

  25. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. quiz 86–8.

    Article  PubMed  Google Scholar 

  26. Mertens LL, Friedberg MK. Imaging the right ventricle–current state of the art. Nat Rev Cardiol. 2010;7:551–63.

    Article  PubMed  Google Scholar 

  27. Estep JD, Stainback RF, Little SH, Torre G, Zoghbi WA. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc Imaging. 2010;3:1049–64.

    Article  PubMed  Google Scholar 

  28. Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS, Cleeton TS, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:1102–7.

    Article  PubMed  Google Scholar 

  29. Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26:217–29.

    Article  PubMed  Google Scholar 

  30. Van Meter Jr CH. Right heart failure: best treated by avoidance. Ann Thorac Surg. 2001;71(3 Suppl):S220–2.

    Article  Google Scholar 

  31. Fitzpatrick 3rd JR, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.

    Article  PubMed  Google Scholar 

  32. Rao V, Oz MC, Flannery MA, Catanese KA, Argenziano M, Naka Y. Revised screening scale to predict survival after insertion of a left ventricular assist device. J Thorac Cardiovasc Surg. 2003;125:855–62.

    Article  PubMed  Google Scholar 

  33. Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD, Miller MA, et al. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant. 2008;27:1065–72.

    Article  PubMed  Google Scholar 

  34. Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Usefulness of the INTERMACS scale to predict outcomes after mechanical assist device implantation. J Heart Lung Transplant. 2009;28:827–33.

    Article  PubMed  Google Scholar 

  35. Kaplon RJ, Gillinov AM, Smedira NG, Kottke-Marchant K, Wang IW, Goormastic M, et al. Vitamin K reduces bleeding in left ventricular assist device recipients. J Heart Lung Transplant. 1999;18:346–50.

    Article  PubMed  CAS  Google Scholar 

  36. Goldstein DJ, Seldomridge JA, Chen JM, Catanese KA, DeRosa CM, Weinberg AD, et al. Use of aprotinin in LVAD recipients reduces blood loss, blood use, and perioperative mortality. Ann Thorac Surg. 1995 May;59:1063–67. Discussion 8.

    Google Scholar 

  37. Morgan JA, John R, Rao V, Weinberg AD, Lee BJ, Mazzeo PA, et al. Bridging to transplant with the HeartMate left ventricular assist device: the Columbia Presbyterian 12-year experience. J Thorac Cardiovasc Surg. 2004;127:1309–16.

    Article  PubMed  Google Scholar 

  38. Neuzil P, Kmonicek P, Skoda J, Reddy VY. Temporary [short-term] percutaneous left ventricular assist device [Tandem Heart] in a patient with STEMI, multivessel coronary artery disease, cardiogenic shock and severe peripheral artery disease. Acute Card Care. 2009;11:146–50.

    Article  PubMed  Google Scholar 

  39. Boeken U, Feindt P, Litmathe J, Kurt M, Gams E. Intraaortic balloon pumping in patients with right ventricular insufficiency after cardiac surgery: parameters to predict failure of IABP Support. J Thorac Cardiovasc Surg. 2009;57:324–8.

    Article  CAS  Google Scholar 

  40. Wagner F, Dandel M, Gunther G, Loebe M, Schulze-Neick I, Laucke U et al. Nitric oxide inhalation in the treatment of right ventricular dysfunction following left ventricular assist device implantation. Circulation 1997; 96: II–6.

    Google Scholar 

  41. Haddad E, Lowson SM, Johns RA, Rich GF. Use of inhaled nitric oxide perioperatively and in intensive care patients. Anesthesiology. 2000;92:1821–5.

    Article  PubMed  CAS  Google Scholar 

  42. Prasad S, Wilkinson J, Gatzoulis MA. Sildenafil in primary pulmonary hypertension. N Engl J Med. 2000;343:1342.

    Article  PubMed  CAS  Google Scholar 

  43. Klodell Jr CT, Morey TE, Lobato EB, Aranda Jr JM, Staples ED, Schofield RS, et al. Effect of sildenafil on pulmonary artery pressure, systemic pressure, and nitric oxide utilization in patients with left ventricular assist devices. Ann Thorac Surg. 2007;83:68–71.

    Article  PubMed  Google Scholar 

  44. SchenkS, McCarthy PM, Blackstone EH, et al. Duration of inotropic support after left ventricular assist device implantation: risk factors and impact on outcome. J Thorac Cardiovasc Surg 2006; 131: 447–54.

    Google Scholar 

  45. Rao V, Slater JP, Edwards NM, Naka Y, Oz MC. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac Surg. 2001;71:1448–53.

    Article  PubMed  CAS  Google Scholar 

  46. Krishan K, Nair A, Pinney S, Adams DH, Anyanwu AC. Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41:213–7.

    Article  PubMed  Google Scholar 

  47. Piacentino 3rd V, Troupes CD, Ganapathi AM, Blue LJ, Mackensen GB, Swaminathan M, et al. Clinical impact of concomitant tricuspid valve procedures during left ventricular assist device implantation. Ann Thorac Surg. 2011;92:1414–8. Discussion 8–9.

    Article  PubMed  Google Scholar 

  48. Maltais S, Topilsky Y, Tchantchaleishvili V, McKellar SH, Durham LA, Joyce LD, et al. Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices. J Thorac Cardiovasc Surg. 2012;143: 1370–76.

    Article  PubMed  Google Scholar 

  49. Potapov EV, Sodian R, Loebe M, Drews T, Dreysse S, Hetzer R. Revascularization of the occluded right coronary artery during left ventricular assist device implantation. J Heart Lung Transplant. 2001;20:918–22.

    Article  PubMed  CAS  Google Scholar 

  50. Van Meter Jr CH, Robbins RJ, Ochsner JL. Technique of right heart protection and deairing during HeartMate vented electric LVAD implantation. Ann Thorac Surg. 1997;63:1191–2.

    Article  Google Scholar 

  51. Loebe M, Potapov E, Sodian R, Kopitz M, Noon GP. A safe and simple method of preserving right ventricular function during implantation of a left ventricular assist device. J Thorac Cardiovasc Surg. 2001;122:1043.

    Article  PubMed  CAS  Google Scholar 

  52. Sun BC, Firstenberg MS, Louis LB, Panza A, Crestanello JA, Sirak J, et al. Placement of long-term implantable ventricular assist devices without the use of cardiopulmonary bypass. J Heart Lung Transplant. 2008;27:718–21.

    Article  PubMed  Google Scholar 

  53. Ghodsizad A, Kar BJ, Layolka P, Okur A, Gonzales J, Bara C, et al. Less invasive off-pump implantation of axial flow pumps in chronic ischemic heart failure: survival effects. J Heart Lung Transplant. 2011;30:834–7.

    Article  PubMed  Google Scholar 

  54. Woo YJ, Acker MA. Implantable ventricular assist device exchange with focused intravascular deairing techniques. Ann Thorac Surg. 2011;91:306–7.

    Article  PubMed  Google Scholar 

  55. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Third INTERMACS annual report: the evolution of destination therapy in the United States. J Heart Lung Transplant. 2011;30:115–23.

    Article  PubMed  Google Scholar 

  56. Morgan JA, John R, Lee BJ, Oz MC, Naka Y. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004;77:859–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nonaka, M., Rao, V. (2014). Strategies to Assess and Minimize Right Heart Failure After Left Ventricular Assist Device Implantation. In: Kyo, S. (eds) Ventricular Assist Devices in Advanced-Stage Heart Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54466-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54466-1_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54465-4

  • Online ISBN: 978-4-431-54466-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics