Skip to main content

Transplant Versus VAD: Evolving and Future Perspectives

  • Chapter
  • First Online:
Ventricular Assist Devices in Advanced-Stage Heart Failure

Abstract

Continuous-flow left ventricular assist devices (CF-LVADs) have become an essential therapeutic option in the standard of care for patients with end-stage heart failure. Clinical outcomes continue to improve through better patient selection, surgical technique, and perioperative management. Current two-year survival rates could exceed 80 % with device support in selected patients, and this is comparable to that of cardiac transplantation. As such, there has been a proliferation in the number of patients receiving device therapy and the centers implanting them. Moreover, CF-LVADs may also provide a platform for innovative treatments, including regenerative and stem cell therapies, to promote functional recovery of the native heart. These advantageous features should encourage the use of CF-LVADs as a replacement for cardiac transplantation in patients with stage D heart failure. However, as compared to transplant, quality of life and device-related costs may be limiting factors. In this relatively nascent field, more clinical trial data, especially from long-term follow-up, will be necessary to evaluate the risks and benefits of durable device support. Ultimately, a head-to-head comparison between the two therapies may need to be considered to answer the inevitable question: can CF-LVAD therapy replace cardiac transplantation as the preferred treatment for advanced heart disease? In the current era, however, it is far more important to appreciate how both strategies may be complementary and under what circumstances, one obviates the other, in order to achieve the best clinical outcome for the patient with end-stage heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. American College of Cardiology F, American Heart A. 2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults a report of the american college of cardiology foundation/american heart association task force on practice guidelines developed in collaboration with the international society for heart and lung transplantation. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  2. Stevenson LW, Kormos RL, Bourge RC, Gelijns A, Griffith BP, Hershberger RE, et al. Mechanical cardiac support 2000: current applications and future trial design. June 15–16, 2000 Bethesda, Maryland. J Am Coll Cardiol. 2001;37:340–70.

    Article  PubMed  CAS  Google Scholar 

  3. Garbade J, Barten MJ, Bittner HB, Mohr FW. Heart transplantation and left ventricular assist device therapy: two comparable options in end-stage heart failure? Clin Cardiol. 2013;36(7):378–82.

    Google Scholar 

  4. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. International Society of H, Lung T. The registry of the international society for heart and lung transplantation: 29th official adult heart transplant report–2012. J Heart Lung Transplant. 2012;31:1052–64.

    Article  PubMed  Google Scholar 

  5. U.S. Department of Health and Human Services. Heathcare Systems Bureau, Division of Transplantation, Editor. Rockville: ARotUSOPaTNatSRoTRTD-HRaSA; 2009.

    Google Scholar 

  6. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  PubMed  CAS  Google Scholar 

  7. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the heartmate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    Article  PubMed  Google Scholar 

  8. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  Google Scholar 

  9. Fitzpatrick 3rd JR, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.

    Article  PubMed  Google Scholar 

  10. Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8.

    Article  PubMed  Google Scholar 

  11. Goda A, Takayama H, Koeckert M, Pak SW, Sutton EM, Cohen S, et al. Use of ventricular assist devices in patients with mitral valve prostheses. J Cardiac Surg. 2011;26:334–7.

    Article  Google Scholar 

  12. Goda A, Takayama H, Pak SW, Uriel N, Mancini D, Naka Y, et al. Aortic valve procedures at the time of ventricular assist device placement. Ann Thorac Surg. 2011;91:750–4.

    Article  PubMed  Google Scholar 

  13. Mikus E, Stepanenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40:971–7.

    PubMed  Google Scholar 

  14. Everly MJ. Cardiac transplantation in the united states: an analysis of the unos registry. Clin Transpl. 2008;35–43.

    Google Scholar 

  15. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure study G. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  PubMed  CAS  Google Scholar 

  16. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Fifth intermacs annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141–56.

    Article  PubMed  Google Scholar 

  17. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  PubMed  CAS  Google Scholar 

  18. Aaronson KD, Slaughter MS, Miller LW, McGee EC, Cotts WG, Acker MA, et al. HeartWare Ventricular Assist Device Bridge to Transplant ATI. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125: 3191–200.

    Article  PubMed  Google Scholar 

  19. Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, et al. Results of the post-U.S. food and drug administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the intermacs (interagency registry for mechanically assisted circulatory support). J Am Coll Cardiol. 2011;57:1890–8.

    Article  PubMed  Google Scholar 

  20. Jorde U, Khushwaha AJ, Tatooles AJ, Naka Y, Bhat G, Long JW, et al. Two-year outcomes in the destination therapy post-fda-approval study with a continuous flow left ventricular assist device: a prospective study using the intermacs registry. J Heart Lung Transplant. 2013;32:S10.

    Article  Google Scholar 

  21. Daneshmand MA, Rajagopal K, Lima B, Khorram N, Blue LJ, Lodge AJ, et al. Left ventricular assist device destination therapy versus extended criteria cardiac transplant. Ann Thorac Surg. 2010;89:1205–9. discussion 1210.

    Article  PubMed  Google Scholar 

  22. Melnitchouk S, Jorde U, Takayama H, Uriel N, Colombo PC, Yang J, et al. Continuous-flow lvad destination therapy versus orthotopic heart transplantation in patients above 65 years of age. J Heart Lung Transplant. 2011;30:S94–5.

    Article  Google Scholar 

  23. Williams ML, Trivedi JR, McCants KC, Prabhu SD, Birks EJ, Oliver L, et al. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann thorac Surg. 2011;91:1330–3. discussion 1333–1334.

    Article  PubMed  Google Scholar 

  24. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M, et al. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg. 2012;144:584–603. discussion 597–588.

    Article  PubMed  Google Scholar 

  25. Uriel N, Pak SW, Hayashi Y, Gukasayan N, Tsiouris SJ, Scully BE, et al. Pneumonia in the first year after heart transplant: Epidemiology, risk factors, and effect on survival. J Cardiac Fail. 2010;16:S55.

    Article  Google Scholar 

  26. Kato TS, Schulze PC, Yang J, Chan E, Shahzad K, Takayama H, et al. Pre-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2012;31:1–8.

    Article  PubMed  Google Scholar 

  27. Goldstein DJ, Naftel D, Holman W, Bellumkonda L, Pamboukian SV, Pagani FD, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31:1151–7.

    Article  PubMed  Google Scholar 

  28. Uriel N, Pak SW, Jorde UP, Jude B, Susen S, Vincentelli A, et al. Acquired von willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56:1207–13.

    Article  PubMed  Google Scholar 

  29. Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart lung Transplant. 2010;29:1172–6.

    Article  PubMed  Google Scholar 

  30. Bejar D, Nahumi N, Uriel N, Thomas S, Han J, Garan A, et al. The prevalence of aortic insufficiency in patients maintained on continuous flow left ventricular assist devices. J Heart Lung Transplant. 2013;32:S185.

    Article  Google Scholar 

  31. Brouwers C, Denollet J, de Jonge N, Caliskan K, Kealy J, Pedersen SS. Patient-reported outcomes in left ventricular assist device therapy: a systematic review and recommendations for clinical research and practice. Circ Heart Fail. 2011;4:714–23.

    Article  PubMed  Google Scholar 

  32. Cowie MR, Cure S, Bianic F, McGuire A, Goodall G, Tavazzi L. Cost-effectiveness of highly purified omega-3 polyunsaturated fatty acid ethyl esters in the treatment of chronic heart failure: Results of markov modelling in a uk setting. Eur J Heart Fail. 2011;13:681–9.

    Article  PubMed  Google Scholar 

  33. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. American Heart Association Advocacy Coordinating C, Stroke C, Council on Cardiovascular R, Intervention, Council on Clinical C, Council on E, Prevention, Council on A, Thrombosis, Vascular B, Council on C, Critical C, Perioperative, Resuscitation, Council on Cardiovascular N, Council on the Kidney in Cardiovascular D, Council on Cardiovascular S, Anesthesia, Interdisciplinary Council on Quality of C Outcomes R. Forecasting the future of cardiovascular disease in the united states: A policy statement from the american heart association. Circulation. 2011;123:933–44.

    Article  PubMed  Google Scholar 

  34. Miller LW, Guglin M, Rogers J. Cost of ventricular assist devices: can we afford the progress? Circulation. 2013;127:743–8.

    Article  PubMed  Google Scholar 

  35. Goldman L, Gordon DJ, Rifkind BM, Hulley SB, Detsky AS, Goodman DW, et al. Cost and health implications of cholesterol lowering. Circulation. 1992;85:1960–8.

    Article  PubMed  CAS  Google Scholar 

  36. Rogers JG, Bostic RR, Tong KB, Adamson R, Russo M, Slaughter MS. Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy. Circ Heart Fail. 2012;5:10–6.

    Article  PubMed  Google Scholar 

  37. Goldstein DJ, Maybaum S, MacGillivray TE, Moore SA, Bogaev R, Farrar DJ, et al. Young patients with nonischemic cardiomyopathy have higher likelihood of left ventricular recovery during left ventricular assist device support. J Cardiac Fail. 2012;18:392–5.

    Article  Google Scholar 

  38. Ibrahim M, Terracciano C, Yacoub MH. Can bridge to recovery help to reveal the secrets of the failing heart? Curr Cardiol Rep. 2012;14:392–6.

    Article  PubMed  Google Scholar 

  39. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355:1873–84.

    Article  PubMed  CAS  Google Scholar 

  40. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011;123:381–90.

    Article  PubMed  CAS  Google Scholar 

  41. Patel SR, Saeed O, Murthy S, Bhatia V, Shin JJ, Wang D, et al. Combining neurohormonal blockade with continuous-flow left ventricular assist device support for myocardial recovery: a single-arm prospective study. J Heart Lung Transplant. 2013;32:305–12.

    Article  PubMed  Google Scholar 

  42. Hou J, Wang L, Jiang J, Zhou C, Guo T, Zheng S, et al. Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev. 2013;9(3):326–38.

    Google Scholar 

  43. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the scipio trial: Surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126:S54–64.

    Article  PubMed  CAS  Google Scholar 

  44. Ibrahim M, Rao C, Athanasiou T, Yacoub MH, Terracciano CM. Mechanical unloading and cell therapy have a synergistic role in the recovery and regeneration of the failing heart. Eur J Cardiothorac Surg. 2012;42:312–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Naka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takayama, H., Thomas, S., Naka, Y. (2014). Transplant Versus VAD: Evolving and Future Perspectives. In: Kyo, S. (eds) Ventricular Assist Devices in Advanced-Stage Heart Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54466-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54466-1_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54465-4

  • Online ISBN: 978-4-431-54466-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics