Skip to main content

Treatment Planning of Carbon-Ion Radiotherapy

  • Chapter
  • First Online:

Abstract

Treatment planning of carbon-ion radiotherapy (C-ion RT) should best use the physical and biological advantages of the radiation, which is heavily coupled to the beam delivery system. In this section, overview of conventional system for broad-beam delivery, which has been used for many years, and a state-of-the-art system for pencil-beam scanning are described in addition to general aspects to plan a treatment of carbon-ion radiotherapy. Finally, we demonstrate the comparison between broad- and scanning-beam plans for a few cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kanematsu N, Matsufuji N, Kohno R, Minohara S, Kanai T. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. Phys Med Biol. 2003;48:1023–64.

    Article  Google Scholar 

  2. Endo M, Koyama-Ito H, Minohara S, Miyahara N, Tomura H, Kanai T, Kawachi K, Tsujii H, Morita K. HIPLAN–a heavy ion treatment planning system at HIMAC. J Jpn Soc Ther Radiol Oncol. 1996;8:231–8.

    Google Scholar 

  3. Kanematsu N, Endo M, Futami Y, Kanai T, Asakura H, Oka H, Yusa K. Treatment planning for the layer-stacking irradiation system for three-dimensional conformal heavy-ion radiotherapy. Med Phys. 2002;29:2823–9.

    Article  PubMed  Google Scholar 

  4. Kanematsu N, Yonai S, Ishizaki A. Grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy. Med Phys. 2007;35:602–7.

    Article  Google Scholar 

  5. Weber U, Kraft G. Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy. Phys Med Biol. 1999;44:2765–75.

    Article  CAS  PubMed  Google Scholar 

  6. Inaniwa T, Furukawa T, Nagano A, Sato S, Saotome N, Noda K, Kanai T. Field-size effect of physical doses in carbon-ion scanning using range shifter plates. Med Phys. 2009;36:2889–97.

    Article  PubMed  Google Scholar 

  7. Kanai T, Endo M, Minohara S, Miyahara N, Koyama-Ito H, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, Furusawa Y, Ando K, Suzuki M, Soga F, Kawachi K. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201–10.

    Article  CAS  PubMed  Google Scholar 

  8. Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy ion beams for therapy. Adv Space Res. 1996;18:5–14.

    Article  CAS  PubMed  Google Scholar 

  9. Elsässer T, Weyrather WK, Friedrich T, Durante M, Iancu G, Krämer M, Kragl G, Brons S, Winter M, Weber KJ, Scholz M. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 2010;78:1177–83.

    Article  PubMed  Google Scholar 

  10. Hawkins RB. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res. 1994;140:366–74.

    Article  CAS  PubMed  Google Scholar 

  11. Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, Sakama M, Shinoda H. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 2006;166:629–38.

    Article  CAS  PubMed  Google Scholar 

  12. Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, Furusawa Y, Noda K. Treatment planning for a scanned carbon ion beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55:6721–37.

    Article  PubMed  Google Scholar 

  13. Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai T, Ando K. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-ion beams. Radiat Res. 2000;154:485–96.

    Article  CAS  PubMed  Google Scholar 

  14. Nocedal J, Wright SJ. Numerical optimization (Springer series in operations research). New York: Springer; 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Kanematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kanematsu, N., Inaniwa, T. (2014). Treatment Planning of Carbon-Ion Radiotherapy. In: Tsujii, H., Kamada, T., Shirai, T., Noda, K., Tsuji, H., Karasawa, K. (eds) Carbon-Ion Radiotherapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54457-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54457-9_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54456-2

  • Online ISBN: 978-4-431-54457-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics