Skip to main content

Abstract

The finite-difference time-domain (FDTD) method has been the only choice of time-domain methods for practical applications with its simplicity and efficiency. However, the simple discretization of the simple wave equation model in which the method has its basis is not sufficient for modeling more complex wave propagation phenomena, high-accuracy simulations, or acoustic fields with complex geometries. In this chapter, alternative time-domain methods that may be applied to such situations are discussed as follows: the linearized Euler equation (LEE) method, the constrained interpolation profile (CIP) method, and the finite-volume time-domain (FVTD) method. The LEE method is applicable to wave propagation phenomena under the influence of arbitrary background flows. The main application of the method is sound propagation simulations outdoors where wind effects are not negligible. The CIP method is characteristic in that the method is in principle free from numerical dispersion. The characteristic allows simulations with high phase accuracy. The FVTD method is constructed on an unstructured grid system. The method thus has an advantage in modeling complex geometries compared to the FDTD method where orthogonal structured grid is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Heimann, R. Blumrich, Time-domain simulations of sound propagation through screen-induced turbulence. Appl. Acoust. 65(6), 561–582 (2004)

    Google Scholar 

  2. V.E. Ostashev, D.K. Wilson, L. Liu, D.F. Aldridge, N.P. Symons, D. Marlin, Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation. J. Acoust. Soc. Am. 117(2), 503–517 (2005)

    Article  Google Scholar 

  3. T. van Renterghem, D. Botteldooren, Prediction-step staggered-in-time FDTD: An efficient numerical scheme to solve the linearized equations of fluid dynamics in outdoor sound propagation. Appl. Acoust. 68(2), 201–216 (2007)

    Google Scholar 

  4. S.K. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Arakawa, in Computational Fluid Dynamics for Engineering (University of Tokyo Press, Tokyo, 1994) (in Japanese)

    Google Scholar 

  6. J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam, in ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA). NASA Conference Publications, pp. 3300 (1995)

    Google Scholar 

  7. T. Yabe, F. Xiao, T. Utsumi, Constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556–593 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Yabe, T. Utsumi, Y. Ogata, The Constrained Interpolation Profile Method (Morikita, Tokyo, 2003). (in Japanese)

    Google Scholar 

  9. T. Aoki, Multi-dimensional advection of CIP (cubic interpolated propagation) scheme. Comput. Fluid Dynamics J. 4, 279–291 (1995)

    Google Scholar 

  10. K. Okubo, S. Oh, T. Tsuchiya, N. Takeuchi, The examination on the three-dimensional acoustic field analysis using the CIP method. IEICE Technical Report, US2006-52:25–30, (2006) (in Japanese)

    Google Scholar 

  11. S. Oh, K. Okubo, T. Tsuchiya, N. Takeuchi, Analysis of acoustic field using the type-C CIP method. IEICE Technical Report, US2006-98:17–22 (2006) (in Japanese)

    Google Scholar 

  12. M. Konno, K. Okubo, T. Tsuchiya, N. Tagawa, Performance of various types of constrained interpolation profile method for two-dimensional numerical acoustic simulation. Jpn. J. Appl. Phys. 47, 3962–3963 (2008)

    Article  Google Scholar 

  13. Y. Tachioka, Y. Yasuda, T. Sakuma, Application of the constrained interpolation profile method to room acoustic problems: Examination of boundary modeling and spatial/time discretization. Acoust. Sci. Tech. 33, 22–32 (2012)

    Google Scholar 

  14. T. Ishizuka, K. Okubo, Y. Ara, Variable-grid technique for sound field analysis using the constrained interpolation profile method. Acoust. Sci. Tech. 33, 387–390 (2012)

    Article  Google Scholar 

  15. G. Szego, in Orthogonal Polynomials (American Mathematical Society, Providence, 1939)

    Google Scholar 

  16. K. Okubo, S. Oh, T. Tsuchiya, N. Takeuchi, Consideration of the boundary condition between two media in acoustic field analysis using the constrained interpolation profile (CIP) method. IEICE Trans. Fundam. E90-A, 2000–2005 (2007) (in Japanese)

    Google Scholar 

  17. G. Mur, Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic-field equation. IEEE Trans. Antennas Propag. 45, 377–382 (1981)

    Google Scholar 

  18. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Ando, M. Hayakawa, Implementation of the perfectly matched layer to the CIP method. IEICE Trans. Electron. E98-C, 645–648 (2006)

    Google Scholar 

  20. T. Ishizuka, K. Okubo, Formulation and examination of the perfectly matched layer for sound field analyses using the constrained interpolation profile method. Acoust. Sci. Tech. 34, 378–381 (2013)

    Article  Google Scholar 

  21. Q. Qui, T.L. Geers, Evaluation of the perfectly matched layer for computational acoustics. J. Comput. Phys. 139, 166–183 (1998)

    Article  Google Scholar 

  22. H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College, June 1996

    Google Scholar 

  23. Architectural Institute of Japan, Benchmark platform on computational methods for architectural/environmental acoustics. http://gacoust.hwe.oita-u.ac.jp/AIJ-BPCA/

  24. C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Oshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Oshima, T., Ishizuka, T., Okubo, K. (2014). Alternative Time-Domain Methods. In: Sakuma, T., Sakamoto, S., Otsuru, T. (eds) Computational Simulation in Architectural and Environmental Acoustics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54454-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54454-8_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54453-1

  • Online ISBN: 978-4-431-54454-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics