Dynamics and Conservation Laws

  • Ryuzo Sato
  • Rama V. Ramachandran
Part of the Advances in Japanese Business and Economics book series (AJBE, volume 1)


In dynamic analysis, we examine the movements of a system over time. From the infancy of their science, economists were interested in the microeconomic and macroeconomic adjustment processes. As for long-term trends, classical economists assumed that would tend towards a stationary state. Modern growth theory, as developed in the second half of this century, indicated the possibility of a non-stationary equilibrium and provided strong impetus to appropriate and adopt for study of economic dynamics the mathematical tools developed in physical sciences.


Saving Rate Hamiltonian Formulation Golden Rule Legendre Transformation Instantaneous Utility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References to Part I

  1. Arnord, K.J. (1973). Rawls’ principle of just saving. Swedish Journal of Economics, 75, 323–335.CrossRefGoogle Scholar
  2. Afriat, S.N. (1984). The true index. In A. Ingham, & A.M. Ulph (Eds.), Demand, equilibrium and trade: essays in honor of Ivor Pearce. London: McMillian.Google Scholar
  3. Allen, R.G.D. (1975). Index numbers in theory and practice. London: Macmillian.Google Scholar
  4. Arnold, V.I. (1973). Ordinary differential equations. Cambridge, MA: MIT Press.Google Scholar
  5. Arnold, V.I. (1989). Mathematical methods of classical mechanics. New York: Springer.CrossRefGoogle Scholar
  6. Banerjee, K.S. (1975). Cost of living index numbers. New York: Marcel Dekker.Google Scholar
  7. Bowley, A.L. (1928). Notes on index numbers. Economic Journal, 38, 216–237.CrossRefGoogle Scholar
  8. Carlson, S. (1939). A study on the pure theory of production, Stockholm economic studies, no. 9. London: P.S. King & Sons.Google Scholar
  9. Clapham, J.H. (1922a). Of empty economic boxes. Economic Journal, 32, 305–314.CrossRefGoogle Scholar
  10. Clapham, J.H. (1922b). The economic boxes: a rejoinder. Economic Journal, 32, 560–563.CrossRefGoogle Scholar
  11. Cohen, A. (1931). An introduction to the Lie theory of one-parameter groups. Boston, MA: Heath.Google Scholar
  12. Cornes, R. (1992). Duality and modern economics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Darrough, M.N., & Southey, C. (1977). Duality in consumer theory made simple: the revealing of Roy’s identity. Canadian Journal of Economics, 10, 307–317.CrossRefGoogle Scholar
  14. Deaton, A., & Muelbauer, J. (1980). Economics and consumer behavior. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Diewert, W.E. (1981). The economic theory of index numbers: a survey. In A. Deaton (Ed.), Essays in the theory and measurement of consumer behaviour in honour of Sir Richard Stone. London: Cambridge University Press.Google Scholar
  16. Diewert, W.E. (1982). Duality approaches to microeconomic theory. In K.J. Arrow, & M.D. Intriligator (Eds.), Handbook of mathematical economics, vol. II (pp. 535–599). Amsterdam: North Holland.Google Scholar
  17. Diewert, W.E. (1987). Index numbers. In J. Eatwell, M. Milgate, & P. Newman (Eds.), The new palgrave: a dictionary of economics. London: Macmillian.Google Scholar
  18. Dirac, P.A.M. (1958). The priniciples of quantum mechanics. Oxford: Clarendon Press.Google Scholar
  19. Dixit, A.K. (1976). The theory of equilibrium growth. London: Oxford University Press.Google Scholar
  20. Dorfman, R., Samuelson, P.A., & Solow, R.M. (1958). Linear programming and economic analysis. New York: McGraw Hill.Google Scholar
  21. Edwards, H.M. (1994). Advanced calculus: a differential forms approach. Boston: Birkhauser.CrossRefGoogle Scholar
  22. Evans, G.C. (1930). Mathematical introduction to economics. New York: McGraw-Hill.Google Scholar
  23. Feynman, R.P., Leighton, R.B., & Sands, M. (1964). Feynman lectures in physics. Massachusetts: Addison-Wesley.Google Scholar
  24. Fisher, I. (1922). The making of index numbers. Boston: Houghton.Google Scholar
  25. Friedman, M. (1983). Foundations of space-time theories: relativity physics and philosophy of science. NJ: Princeton University Press.Google Scholar
  26. Frisch, R. (1936). Annual surveys of general economic theory: the problem of index numbers. Econometrica, 4, 1–38.CrossRefGoogle Scholar
  27. Frisch, R. (1965). Theory of production. Chicago: Rand-McNally.CrossRefGoogle Scholar
  28. Gelfand, I.M., & Fomin, S.V. (1963). Calculus of variations. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  29. Goldman, S.M., & Uzawa, H. (1964). A note on seperability in demand analysis. Econometrica, 32, 387–398.CrossRefGoogle Scholar
  30. Hanoch, G. (1975). Production or demand models with direct or indirect implicit addictivity. Econometrica, 43, 395–420.CrossRefGoogle Scholar
  31. Hicks, J.R. (1946). Value and capital, 2nd edn. Oxford: Clarendon Press.Google Scholar
  32. Hicks, J.R. (1969). Direct and indirect addictivity. Econometrica, 37, 353–354.CrossRefGoogle Scholar
  33. Houthakker, H.S. (1960). Addicitive preferences. Econometrica, 28, 244–257.CrossRefGoogle Scholar
  34. Houthakker, H.S. (1965). A note on self-dual preferences. Econometrica, 33, 797–801.CrossRefGoogle Scholar
  35. Johnson, W.E. (1913). The pure theory of utility curves. Economic Journal, 23, 483–513.CrossRefGoogle Scholar
  36. Katzner, D.W. (1970). Static demand theory. New York: McMillian.Google Scholar
  37. Kemp, M.C., & Long, N.V. (1982). On evaluation of social income in a dynamic economy: variations on the Samuelsonian theme. In G.R. Feiwel (Ed.), Samuelson and neoclassical economics. Boston: Kluwer-Nijhoff.Google Scholar
  38. Keynes, J.M. (1930). A treatise on money. London: McMillian.Google Scholar
  39. Klein, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.Google Scholar
  40. Konus, A.A. (1939). The problem of the true index of the cost of living (English translation of 1924 article). Econometrica, 7, 10–29.CrossRefGoogle Scholar
  41. Koopmans, T.C. (1967). Intertemporal distribution and ‘optimal’ aggregate economic growth. In Ten economic studies in the tradition of Irving Fisher. New York: Wiley.Google Scholar
  42. Lau, L.J. (1969). Duality and the structure of utility preferences. Journal of Economic Theory, 1, 374–396.CrossRefGoogle Scholar
  43. Lau, L.J. (1978). Applications of profit functions. In M. Fuss, & D. Mc-Fadden (Eds.), Production economics: a dual approach to theory and applications, vol. 1. Amsterdam: North-Holand.Google Scholar
  44. Marshall, A. (1920). Principles of economics: an introductory volume. London: McMillian.Google Scholar
  45. Minhas, B.S. (1963). An international comparison of factor costs and factor use. Amsterdam: North-Holland.Google Scholar
  46. Olver, P.J. (1986). Applications of Lie groups to differential equations. New York: Springer.CrossRefGoogle Scholar
  47. Olver, P.J. (1995). Equivalence, invariants, and symmetry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Pearce, I.F. (1962). The end of the golden age in Solovia. American Economic Review, 52, 1088–1097.Google Scholar
  49. Phelps, E.S. (1987). Golden rule. In J. Eatwell, M. Milgate, & P. Neuman (Eds.), New pelgrave: a dictionary of economics. London: McMillian.Google Scholar
  50. Pigou, A.C. (1922). Empty economic boxes: a reply. Economic Journal, 32, 16–30.Google Scholar
  51. Pollak, R.A. (1971). Additive utility functions and linear engel curves. The Review of Economic Studies, 37, 401–413.CrossRefGoogle Scholar
  52. Ramsey, F. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.CrossRefGoogle Scholar
  53. Richter, M.K. (1966). Invariance axioms and economic indexes. Econometrica, 34, 739–755.CrossRefGoogle Scholar
  54. Robertson, D.H. (1924). Those empty economic boxes. Economic Journal, 34, 16–30.CrossRefGoogle Scholar
  55. Russell, R.R. (1964). The empirical evaluation of theoretically plausible demand functions, Ph.D. Dissertation. Harvard University, Cambridge, MA.Google Scholar
  56. Samuelson, P.A. (1938). A note on the pure theory of consumer’s behavior. Economical, 5, 62–71.Google Scholar
  57. Samuelson, P.A. (1947). Foundations of economic analysis. Cambridge, MA: Harvard University Press.Google Scholar
  58. Samuelson, P.A. (1950). The problem of integrability in utility theory. Economica, 17, 355–385.CrossRefGoogle Scholar
  59. Samueslon, P.A. (1961). The evaluation of social income: capital formation and wealth. In F.A. Lutz, & D.C. Hague (Eds.), Theory of capital. London: McMillian.Google Scholar
  60. Samuelson, P.A. (1965). A catenary turnpike theorem involving consumption and the golden rule. American Economic Review, 55, 486–496.Google Scholar
  61. Samuelson, P.A. (1967). Turnpike refutation of the golden rule in the welfare-maximizing many year plan. In K. Shell (Ed.), Essays in the theory of optimal economic growth. Cambridge: MIT Press.Google Scholar
  62. Samuelson, P.A. (1969). Corrected formulation of direct and indirect additivity. Econometrica, 37, 355–359.CrossRefGoogle Scholar
  63. Samuelson, P.A. (1970). Law of conservation of capital-output ratio in closed von Neumann systems. Proceedings of the National Academy of Science, Applied Mathematical Science, 67, 1477–1479.CrossRefGoogle Scholar
  64. Samuelson, P.A., & Solow, R.M. (1956). A complete capital model involving heterogeneous captial goods. Quarterly Journal of Economics, 70, 537–567.CrossRefGoogle Scholar
  65. Samuelson, P.A., & Swamy, S. (1974). Invariant economic index numbers and canaoncial duality: survey and synthesis. American Economic Review, 64, 566–593.Google Scholar
  66. Sato, R. (1974). On the separable class of non-homothetic CES functions. Economic Studies Quarterly, 25, 42–55.Google Scholar
  67. Sato, R. (1976). Self-dual preferences. Econometrica, 44, 1017–1032.CrossRefGoogle Scholar
  68. Sato, R. (1977a). Homothetic and non-homothetic CES functions. American Economic Review, 67, 559–569.Google Scholar
  69. Sato, R. (1977b). The implicit formulation and non-homothetic structure of utility functions. In H. Albach, E. Helmstadter, & R. Henn (Eds.), Qualitative wirtshcaftsfors chung: W. Krelle zum 60. Geburstag. Tubingen: Mohr.Google Scholar
  70. Sato, R. (1981). Theory of technical change and economic invariance: application of Lie groups. New York: Academic Press.Google Scholar
  71. Sato, R. (1985). The invariance principle and income-wealth conservation laws. Journal of Econometrics, 30, 365–389. Reprint (1990) In R. Sato, & R. Ramchandran (Eds.), Conservation laws and symmetry: applications to economics and finance (pp.71–106). Norwell, MA: Kluwer.Google Scholar
  72. Sato, R. (1990). The invariance principle and income-wealth conservation laws. In R. Sato, & R. Ramachandran, Conservation laws and symmetry. Boston:KluwerGoogle Scholar
  73. Sato, R., & Matsushita, M. (1989). Estimation of self-dual demand functions: an international comaprison. In R. Sato, & T. Negishi (Eds.), Developments in Japanese economics. Tokyo: Academic Press.Google Scholar
  74. Sato, R., & Ramachandran, R. (1974). Models of optimal endogenous technical progress, scale effect, and duality of production functions, Discussion Paper, Department of Economics, Brown University, Providence, RIGoogle Scholar
  75. Schneider, E. (1934). Theorie der production. Vienna: J. Springer.CrossRefGoogle Scholar
  76. Shepherd, R.W. (1953). Cost and production fucntions. Princeton, NJ: Princeton University Press.Google Scholar
  77. Solow, R.M. (1957). Technical change and the aggregte production function. Review of Economic Statistics, 39, 312–320.CrossRefGoogle Scholar
  78. Silberberg, E. (1990). The structure of economics: a mathematical analysis. New York: McGraw Hill.Google Scholar
  79. Sraffa, P. (1926). The laws of return under competitive conditions. Economic Journal, 36, 535–550.CrossRefGoogle Scholar
  80. Stephani, H, & MacCullum, M. (1989). Differential equations: their solution using symmetries. Cambridge: Cambridge Unviversity Press.Google Scholar
  81. Stigler, G.J. (1961). Economic problems in measuring changes in productivity. Output, input, and productivity, measurement, conference on research in income and wealth (pp. 47–63). Princeton, NJ: Princeton University Press.Google Scholar
  82. Vanek, J. (1968). Maximal economic growth. Ithaca, NY: Cornell University Press.Google Scholar
  83. Varian, H.R. (1984). Microeconomic analysis. New York: W.W. Norton & Co.Google Scholar
  84. Weitzman, M.L. (1976). On the welfare significance of national product in a dynamic economy. Quarterly Journal of Economics, 90, 156–162.CrossRefGoogle Scholar
  85. Whitaker, J.K. (1990). Marshall’s theories of competitive price. In R.M. Tullberg (Ed.), Alfred Marshall in retrospect (pp. 29–48). Vermont: Edward Elgar.Google Scholar
  86. Yoglam, I. (1988). Felix Klein and Sophus Lie: evolution of the idea of symmetry in the nineteenth century. Boston: Birkhauser.Google Scholar
  87. Zellner, A., & Revanker, N.S. (1969). Generalized production functions. Review of Economic Studies, 36, 241–250.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Ryuzo Sato
    • 1
  • Rama V. Ramachandran
    • 2
  1. 1.Stern School of BusinessNew York UniversityNew YorkUSA
  2. 2.Pebble Brook LanePlanoUSA

Personalised recommendations