Skip to main content

Inflammation and Cytokines in Endometriosis

  • Chapter
  • First Online:
Endometriosis

Abstract

Endometriosis, a common disease among women of reproductive age, is characterized by the presence and growth of endometrial tissue (glands and stroma) outside the uterus. Dysmenorrhea and infertility common in endometriosis compromise the quality of life of reproductive age women. Despite a long history of clinical experience and experimental research, endometriosis remains an enigma, and its pathogenesis is still controversial. The peritoneal fluid (PF) of women with endometriosis contains an increased number of activated macrophages that secrete a variety of local products, such as growth factors and cytokines. In this chapter, we review the current understanding of the role of cytokines in the pathogenesis of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cullen TS. The distribution of adenomyomata containing uterine mucosa. Am J Obstet Gynecol. 1919;80:130–8.

    Google Scholar 

  2. Harada T, Iwabe T, Terakawa N. Role of cytokines in endometriosis. Fertil Steril. 2001;76:1–10.

    CAS  PubMed  Google Scholar 

  3. D’Hooghe TM, Debrock S. Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboon. Human Reprod Update. 2002;8:84–8.

    Google Scholar 

  4. Eskenazi B, Warner M. Epidemiology of endometriosis. Obstet Gynecol Clin North Am. 1997;24:235–58.

    CAS  PubMed  Google Scholar 

  5. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the pelvic cavity. Am J Obstet Gynecol. 1927;14:422–69.

    Google Scholar 

  6. Liu D, Hitchcock A. Endometriosis: its association with retrograde menstruation, dysmenorrhoea and tubal pathology. Br J Obstet Gynaecol. 1986;93:859–62.

    CAS  PubMed  Google Scholar 

  7. Kruitwagen R, Poels L, Willemsen W, de Ronde IJY, Jap PHK, Rolland R. Endometrial epithelial cells in peritoneal fluid during the early follicular phase. Fertil Steril. 1991;55:297–303.

    CAS  PubMed  Google Scholar 

  8. Oosterlynck DJ, Cornillie FJ, Waer M, Vandeputte M, Koninckx PR. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril. 1991;56:45–51.

    CAS  PubMed  Google Scholar 

  9. Khan KN, Kitajima M, Hiraki K, Yamaguchi N, Katamine S, Matsuyama T, Nakashima M, Fujishita A, Ishimaru T, Masuzaki H. Escherichia coli contamination of menstrual blood and effect of bacterial endotoxin on endometriosis. Fertil Steril. 2010;94:2860–3.

    CAS  PubMed  Google Scholar 

  10. Iba Y, Harada T, Horie S, Deura I, Iwabe T, Terakawa N. Lipopolysaccharide-promoted proliferation of endometriotic stromal cells via induction of tumor necrosis factor alpha and interleukin-8 expression. Fertil Steril. 2004;82 Suppl 3:1036–42.

    CAS  PubMed  Google Scholar 

  11. Maathuis JB, Van Lock PFA, Michie EA. Changes in volume, total protein and ovarian steroid concentrations of peritoneal fluid throughout the human menstrual cycle. J Endocrinol. 1978;76:123–33.

    CAS  PubMed  Google Scholar 

  12. Syrop CH, Halme J. Cyclic changes of peritoneal fluid parameters in normal and infertile patients. Obstet Gynecol. 1987;69:416–8.

    CAS  PubMed  Google Scholar 

  13. Syrop CH, Halme J. Peritoneal fluid environment and infertility. Fertil Steril. 1987;48:1–9.

    CAS  PubMed  Google Scholar 

  14. Taketani Y, Kuo TM, Mizuno M. Comparison of cytokine levels and embryo toxicity in peritoneal fluid in infertile women with untreated or treated endometriosis. Am J Obstet Gynecol. 1992;167:265–70.

    CAS  PubMed  Google Scholar 

  15. Hsu CC, Yang BC, Wu MH, Huang KE. Enhanced interleukin-4 expression in patients with endometriosis. Fertil Steril. 1997;67:1059–64.

    CAS  PubMed  Google Scholar 

  16. Koyama N, Matsuura K, Okamura H. Cytokines in the peritoneal fluid of patients with endometriosis. Int J Gynecol Obstet. 1993;43:45–50.

    CAS  Google Scholar 

  17. Buyalos RP, Funari VA, Azziz R, Watson JM, Martinez-Maza O. Elevated interleukin-6 levels in peritoneal fluid of patients with pelvic pathology. Fertil Steril. 1992;58:302–6.

    CAS  PubMed  Google Scholar 

  18. Rier SE, Zarmakoupis PN, Hu X, Becker JL. Dysregulation of interleukin-6 responses in ectopic endometrial stromal cells: correlation with decreased soluble receptor levels in peritoneal fluid of women with endometriosis. J Clin Endocrinol Metab. 1995;80:1431–7.

    CAS  PubMed  Google Scholar 

  19. Keenan JA, Chen TT, Chadwell NL, Torry DS, Caudle MR. Interferon-gamma and interleukin-6 in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am J Reprod Immunol. 1994;32:180–3.

    CAS  PubMed  Google Scholar 

  20. Punnonen J, Teisala K, Ranta H, Bennett B, Punonnen R. Increased levels of interleukin-6 and interleukin-10 in the peritoneal fluid of patients with endometriosis. Am J Obstet Gynecol. 1996;174:1522–6.

    CAS  PubMed  Google Scholar 

  21. Harada T, Yoshioka H, Yoshida S, Iwabe T, Onohara Y, Tanikawa M, Terakawa N. Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis. Am J Obstet Gynecol. 1997;176:593–7.

    CAS  PubMed  Google Scholar 

  22. Ryan IP, Tseng JF, Schriock ED, Khorram O, Landers DV, Taylor RN. Interleukin-8 concentrations are elevated in peritoneal fluid of women with endometriosis. Fertil Steril. 1995;63:929–32.

    CAS  PubMed  Google Scholar 

  23. Arici A, Tazuke SI, Attar E, Kliman HJ, Olive DL. Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod. 1996;2:40–5.

    CAS  PubMed  Google Scholar 

  24. Iwabe T, Harada T, Tsudo T, Tanikawa M, Onohara Y, Terakawa N. Pathogenetic significance of increased levels of interleukin-8 in peritoneal fluid of patients with endometriosis. Fertil Steril. 1998;69:924–30.

    CAS  PubMed  Google Scholar 

  25. Ho HN, Wu MY, Chao KH, Chen CD, Chen SU, Yang YS. Peritoneal interleukin-10 increases with decrease in activated CD41 T lymphocytes in women with endometriosis. Hum Reprod. 1997;12:2528–33.

    CAS  PubMed  Google Scholar 

  26. Tagashira Y, Taniguchi F, Harada T, Ikeda A, Watanabe A, Terakawa N. Interleukin-10 attenuates TNF-alpha-induced interleukin-6 production in endometriotic stromal cells. Fertil Steril. 2009;91(5 Suppl):2185–92.

    CAS  PubMed  Google Scholar 

  27. Zeyneloglu HB, Senturk LM, Seli E, Bahtiyar OM, Olive DL, Arici A. The peritoneal fluid levels of interleukin-12 in women with endometriosis. Am J Reprod Immunol. 1998;39:152–6.

    CAS  PubMed  Google Scholar 

  28. Mazzeo D, Vigano P, Di Blasio AM, Sinigaglia F, Vignali M, Panina BP. Interleukin-12 and its free p40 subunit regulate immune recognition of endometrial cells: potential role in endometriosis. J Clin Endocrinol Metab. 1998;83:911–6.

    CAS  PubMed  Google Scholar 

  29. McLaren J, Dealthy G, Prentice A, Charnock-Jones DS, Smith SK. Decreased levels of the potent regulator of monocyte/macrophage activation, interleukin-13, in the peritoneal fluid of patients with endometriosis. Hum Reprod. 1997;12:1307–10.

    CAS  PubMed  Google Scholar 

  30. Zhang X, Xu H, Lin J, Qian Y, Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG. 2005;112:1153–5.

    PubMed  Google Scholar 

  31. Antinolo G, Fernandez RM, Noval JA, Garcia-Lozano JC, Borrego S, Marcos I, Molini JL. Evaluation of germline sequence variants within the promoter region of RANTES gene in a cohort of women with endometriosis from Spain. Mol Hum Reprod. 2003;9:491–5.

    CAS  PubMed  Google Scholar 

  32. Santulli P, Even M, Chouzenoux S, Millischer AE, de Borghese B, Ziegler D, Batteux F, Chapron C. Profibrotic interleukin-33 is correlated with uterine leiomyoma tumour burden. Hum Reprod. 2013;27:2001–9.

    Google Scholar 

  33. Khorram O, Taylor RN, Ryan IP, Schall TJ, Landers DV. Peritoneal fluid concentrations of the cytokine RANTES correlate with the severity of endometriosis. Am J Obstet Gynecol. 1993;169:1545–9.

    CAS  PubMed  Google Scholar 

  34. Akoum A, Lemay A, Brunet C, Hebert J. Cytokine-induced secretion of monocyte chemotactic protein-1 by human endometriotic cells in culture. The Groupe d’Investigation en Gynecologie. Am J Obstet Gynecol. 1995;172:594–600.

    CAS  PubMed  Google Scholar 

  35. Akoum A, Lemay A, McColl S, Turcot Lemay L, Maheux R. Elevated concentration and biologic activity of monocyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil Steril. 1996;66:17–23.

    CAS  PubMed  Google Scholar 

  36. Arici A, Oral E, Attar E, Tazuke SI, Olive DL. Monocyte chemotactic protein-1 concentration in peritoneal fluid of women with endometriosis and its modulation of expression in mesothelial cells. Fertil Steril. 1997;67:1065–72.

    CAS  PubMed  Google Scholar 

  37. Fukaya T, Sugawara J, Yoshida H, Yajima A. The role of macrophage colony stimulating factor in the peritoneal fluid in infertile patients with endometriosis. Tohoku J Exp Med. 1994;172:221–6.

    CAS  PubMed  Google Scholar 

  38. Oosterlynck D, Meuleman M, Waer M, Koninckx P. Transforming growth factor-b activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol. 1994;83:287–92.

    CAS  PubMed  Google Scholar 

  39. McLaren J, Prentice A, Charnock-Jones DS, Smith SK. Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Hum Reprod. 1996;11:220–3.

    CAS  PubMed  Google Scholar 

  40. McLaren J, Prentice A, Charnock-Jones DS, Millican SA, Muller KH, Sharkey AM, Smith SK. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98:482–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Tabibzadeh S, Santhanam V, Sehgel PB, May LT. Cytokine-induced production of IFN-b2 by freshly explanted human endometrial stromal cells. Modulation by estradiol-17b. J Immunol. 1989;142:3134–9.

    CAS  PubMed  Google Scholar 

  42. Betjes MGH, Tuk CW, Struik DG, Kredict RT, Arisz L, Hart M, Beelen RH. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-a, interleukin-1, and medium conditioned by macrophages co-cultured with Staphylococcus epidermidis. J Infect Dis. 1993;168:1202–10.41.

    CAS  PubMed  Google Scholar 

  43. Halme J, Becker S, Wing R. Accentuated cyclic activation of peritoneal macrophages in patients with endometriosis. Am J Obstet Gynecol. 1984;148:85–90.

    CAS  PubMed  Google Scholar 

  44. Halme J, Becker S, Haskill S. Altered maturation and function of peritoneal macrophages: possible role in pathogenesis of endometriosis. Am J Obstet Gynecol. 1987;156:783–9.

    CAS  PubMed  Google Scholar 

  45. Akoum A, Lemay A, Paradis I, Rheault N, Maheux R. Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. Hum Reprod. 1996;11:2269–75.

    CAS  PubMed  Google Scholar 

  46. Tseng JF, Ryan IP, Milam TD, Murao JT, Schriock ED, Landers DV, et al. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 1996;81:1118–22.

    CAS  PubMed  Google Scholar 

  47. Tsudo T, Harada T, Iwabe T, Tanikawa M, Nagano Y, Ito M, Terakawa N. Altered gene expression and secretion of interleukin-6 in stromal cells derived from endometriotic tissues. Fertil Steril. 2000;73:205–11.

    CAS  PubMed  Google Scholar 

  48. Witz CA, Monotoya-Rodriguez IA, Schenken RS. Whole explants of peritoneum and endometrium: a novel model of the early endometriosis lesion. Fertil Steril. 1999;71:56–60.

    CAS  PubMed  Google Scholar 

  49. Rosenfeld DL, Lecher BD. Endometriosis in a patient with Rokitansky- Kuster-Hauser syndrome. Am J Obstet Gynecol. 1981;139:105.

    CAS  PubMed  Google Scholar 

  50. Ohtake H, Katabuchi H, Matsuura K, Okamura H. A novel in vitro experimental model for ovarian endometriosis. The three-dimensional culture of human ovarian surface epithelial cells in collagen gels. Fertil Steril. 1999;71:50–5.

    CAS  PubMed  Google Scholar 

  51. van der Linden PJ, de Goeij AF, Dunselman GA, van der Linden EP, Ramaekers FL, Evers JL. Expression of integrins and E-cadherin in cells from menstrual effluent, endometrium, peritoneal fluid, peritoneum, and endometriosis. Fertil Steril. 1994;61:85–90.

    PubMed  Google Scholar 

  52. Smith RE, Hogaboam CM, Strieter RM, Lukas NW, Kunkel SL. Cell-to-cell and cell-to-matrix interactions mediate chemokine expression: an important component of the inflammatory lesion. J Leukoc Biol. 1997;62:612–9.

    CAS  PubMed  Google Scholar 

  53. Garcia-Velasco JA, Arici A. Interleukin-8 stimulates endometrial stromal cell adhesion to fibronectim. Fertil Steril. 1999;72:336–40.

    CAS  PubMed  Google Scholar 

  54. Garcia-Velasco JA, Arici A. Interleukin-8 expression in endometrial stromal cells is regulated by integrin-dependent cell adhesion. Mol Hum Reprod. 1999;5:1135–40.

    CAS  PubMed  Google Scholar 

  55. Wilson TJ, Munnery L, Hertzog PJ, Wood EC, Biotech DAM, Kola I. Decreased natural killer cell activity in endometriosis patients: relationship to disease pathogenesis. Fertil Steril. 1994;62:1086–8.

    CAS  PubMed  Google Scholar 

  56. Kanzaki H, Wang HS, Kariya M, Mori T. Suppression of natural killer cell activity by sera from patients with endometriosis. Am J Obstet Gynecol. 1992;167:257–61.

    CAS  PubMed  Google Scholar 

  57. Somigliana S, Vigano P, Gaffuri B, Guarneri D, Busacca M, Vigbali M. Human endometrial stromal cells as a source of soluble intercellular adhesion molecule (ICAM)-1 molecules. Hum Reprod. 1996;11:1190–4.

    CAS  PubMed  Google Scholar 

  58. Fukaya T, Sugawara J, Yoshida H, Murakami T, Yajima A. Intercellular adhesion molecule-1 and hepatocyte growth factor in human endometriosis: original investigation and a review of literature. Gynecol Obstet Invest. 1999;47 Suppl 1:11–7.

    CAS  PubMed  Google Scholar 

  59. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–45.

    CAS  PubMed  Google Scholar 

  60. Wysocka M, Kubin M, Vieira LQ, Ozmen L, Garotta G, Scott P, et al. Interleukin-12 is required for IFN- production and lethality in lipopolysaccharide- induced shock in mice. Eur J Immunol. 1995;25:672–6.

    CAS  PubMed  Google Scholar 

  61. Somigliana S, Vigano P, Rossi G, Carinelli S, Vignali M, Panina-Bordignon P. Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum Reprod. 1999;14:2944–50.

    CAS  PubMed  Google Scholar 

  62. Folkman J, Haudenschild C. Angiogenesis in vitro. Nature. 1980;288:551–6.

    CAS  PubMed  Google Scholar 

  63. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med. 1995;333:1757–64.

    CAS  PubMed  Google Scholar 

  64. Subik P. Vascularization of tumors: a review. J Cancer Res Clin Oncol. 1982;103:211–26.

    Google Scholar 

  65. Oosterlynck DJ, Meuleman H, Sobis M, Vandeputte M, Koninckx PR. Angiogenic activity of peritoneal fluid from women with endometriosis. Fertil Steril. 1993;59:778–82.

    CAS  PubMed  Google Scholar 

  66. Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM. IL-8 produced by human malignant melanoma cells in vitro in an essential autocrine growth factor. J Immunol. 1993;151:2667–75.

    CAS  PubMed  Google Scholar 

  67. Yamanaka R, Tanaka R, Yoshida S, Saitoh T, Fujita K. Growth inhibition of human glioma cells modulated by retrovirus gene transfection with antisense IL-8. J Neurooncol. 1995;25:59–65.

    CAS  PubMed  Google Scholar 

  68. Arici A, Seli E, Senturk LM, Gutierrez LS, Oral E, Taylor HS. Interleukin-8 in human endometrium. J Clin Endocrinol Metab. 1998;83:1783–7.

    CAS  PubMed  Google Scholar 

  69. Arici A, Seli E, Zeyneloglu HB, Senturk LM, Oral E, Olive DL. Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor. J Clin Endocrinol Metab. 1998;83:1201–5.

    CAS  PubMed  Google Scholar 

  70. Iwabe T, Harada T, Tsudo T, Nagano Y, Tanikawa M, Terakawa N. Tumor necrosis factor-a promotes proliferation of the endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J Clin Endocrinol Metab. 2000;85:824–9.

    CAS  PubMed  Google Scholar 

  71. Wu MH, Lin SC, Hsiao KY, Tsai SJ. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol. 2011;225:390–400.

    CAS  PubMed  Google Scholar 

  72. Maybin JA, Barcroft J, Thiruchelvam U, Hirani N, Jabbour HN, Critchley HO. The presence and regulation of connective tissue growth factor in the human endometrium. Hum Reprod. 2012;27:1112–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Henriet P, Gaide Chevronnay HP, Marbaix E. The endocrine and paracrine control of menstruation. Mol Cell Endocrinol. 2012;358:197–207.

    CAS  PubMed  Google Scholar 

  74. Becker CM, Beaudry P, Funakoshi T, Benny O, Zaslavsky A, Zurakowski D, Folkman J, D’Amato RJ, Ryeom S. Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am J Pathol. 2011;178:1782–91.

    PubMed Central  PubMed  Google Scholar 

  75. Lin YJ, Lai MD, Lei HY, Wing LY. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147:1278–86.

    CAS  PubMed  Google Scholar 

  76. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod. 1998;13:1686–90.

    CAS  PubMed  Google Scholar 

  77. Ren QZ, Qian ZH, Jia SH, Xu ZZ. Vascular endothelial growth factor expression up-regulated by endometrial ischemia in secretory phase plays an important role in endometriosis. Fertil Steril. 2011;95:2687–9.

    CAS  PubMed  Google Scholar 

  78. Goteri G, Lucarini G, Filosa A, Pierantoni A, Montik N, Biagini G, Fabris G, Ciavattini A. Immunohistochemical analysis of vascular endothelial growth factor cellular expression in ovarian endometriomata. Fertil Steril. 2004;81:1528–33.

    CAS  PubMed  Google Scholar 

  79. Surrey ES, Halme J. Effect of peritoneal fluid from endometriosis patients on endometrial stromal cell proliferation in vitro. Obstet Gynecol. 1990;76:792–7.

    CAS  PubMed  Google Scholar 

  80. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell. 1991;67:901–8.

    CAS  PubMed  Google Scholar 

  81. Barros EJ, Santos OF, Matsumoto K, Makamura T, Nigam SK. Differential tubulogenic and branching morphogenetic activities of growth factors. Proc Natl Acad Sci U S A. 1995;92:4412–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Sugawara J, Fukaya T, Murakami T, Yoshida H, Yajima A. Hepatocyte growth factor stimulated proliferation, migration, and lumen formation of human endometrial epithelial cells in vitro. Biol Reprod. 1997;57:936–42.

    CAS  PubMed  Google Scholar 

  83. Corps AN, Sowter HM, Smith SK. Hepatocyte growth factor stimulates motility, chemotaxis and mitogenesis in ovarian carcinoma cells expressing high levels of c-met. Int J Cancer. 1997;73:151–5.

    CAS  PubMed  Google Scholar 

  84. Yoshida S, Harada T, Mitsunari M, Iwabe T, Sakamoto Y, Tsukihara S, Iba Y, Horie S, Terakawa N. Hepatocyte growth factor/Met system promotes endometrial and endometriotic stromal cell invasion via autocrine and paracrine pathways. J Clin Endocrinol Metab. 2004;89:823–32.

    CAS  PubMed  Google Scholar 

  85. Tagoh H, Nishimoto N, Ogata A, Yoshizaki K. Multiplicity in the production and the function of IL-6. Clin Immunol. 1989;21:1225–41.

    Google Scholar 

  86. Iwabe T, Harada T, Terakawa N. Role of cytokines in endometriosis-associated infertility. Gynecol Obstet Invest. 2002;53 Suppl 1:19–25.

    CAS  PubMed  Google Scholar 

  87. Banerjee J, Sharma R, Agarwal A, Maitra D, Diamond MP, Abu-Soud HM. IL-6 and mouse oocyte spindle. PLoS One. 2012;7:e35535.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Fujii A, Harada T, Yamauchi N, Iwabe T, Nishi Y, Yanase T, Nawata H, Terakawa N. Interleukin-8 expression is up-regulated by interleukin-1b in steroidogenic human granulosa-like cells. Fertil Steril. 2003;79:151–7.

    PubMed  Google Scholar 

  89. Deura I, Harada T, Taniguchi F, Iwabe T, Izawa M, Terakawa N. Reduction of estrogen production by interleukin-6 in a human granulosa tumor cell line may have implications for endometriosis-associated infertility. Fertil Steril. 2005;83 Suppl 1:1086–92.

    CAS  PubMed  Google Scholar 

  90. Yoshida S, Harada T, Iwabe T, Taniguchi F, Mitsunari M, Yamauchi N, Deura I, Horie S, Terakawa N. A combination of interleukin-6 and its soluble receptor impairs sperm motility: implications in infertility associated with endometriosis. Hum Reprod. 2004;19(8):1821–5.

    CAS  PubMed  Google Scholar 

  91. Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, Wang Y, Wang X, Ghosh S, Guo SW. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology. 2006;147:232–46.

    CAS  PubMed  Google Scholar 

  92. Velarde MC, Aghajanova L, Nezhat CR, Giudice LC. Increased mitogen-activated protein kinase kinase/extracellularly regulated kinase activity in human endometrial stromal fibroblasts of women with endometriosis reduces 3′,5′-cyclic adenosine 5′-monophosphate inhibition of cyclin D1. Endocrinology. 2009;150:4701–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Matsuzaki S, Canis M, Vaurs-Barrière C, Pouly JL, Boespflug-Tanguy O, Penault-Llorca F, Dechelotte P, Dastugue B, Okamura K, Mage G. DNA microarray analysis of gene expression profiles in deep endometriosis using laser capture microdissection. Mol Hum Reprod. 2004;10:719–28.

    CAS  PubMed  Google Scholar 

  94. Yamauchi N, Harada T, Taniguchi F, Yoshida S, Iwabe T, Terakawa N. Tumor necrosis factor-alpha induced the release of interleukin-6 from endometriotic stromal cells by the nuclear factor-kappaB and mitogen-activated protein kinase pathways. Fertil Steril. 2004;82 Suppl 3:1023–8.

    CAS  PubMed  Google Scholar 

  95. Yoshino O, Osuga Y, Hirota Y, Koga K, Hirata T, Harada M, Morimoto C, Yano T, Nishii O, Tsutsumi O, Taketani Y. Possible pathophysiological roles of mitogen-activated protein kinases (MAPKs) in endometriosis. Am J Reprod Immunol. 2004;52:306–11.

    PubMed  Google Scholar 

  96. Grund EM, Kagan D, Tran CA, Zeitvogel A, Starzinski-Powitz A, Nataraja S, Palmer SS. Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol Pharmacol. 2008;73:1394–404.

    CAS  PubMed  Google Scholar 

  97. Lee DH, Kim SC, Joo JK, Kim HG, Na YJ, Kwak JY, Lee KS. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients. J Obstet Gynaecol Res. 2012;38:516–25.

    CAS  PubMed  Google Scholar 

  98. Yoshino O, Osuga Y, Koga K, Hirota Y, Hirata T, Ruimeng X, Na L, Yano T, Tsutsumi O, Taketani Y. FR 167653, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis in a murine model. J Reprod Immunol. 2006;72(1–2):85–93.

    CAS  PubMed  Google Scholar 

  99. Zhou WD, Yang HM, Wang Q, Su DY, Liu FA, Zhao M, Chen QH, Chen QX. SB203580, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis by down-regulating proinflammatory cytokines and proteolytic factors in a mouse model. Hum Reprod. 2010;25:3110–6.

    CAS  PubMed  Google Scholar 

  100. González-Ramos R, Defrère S, Devoto L. Nuclear factor-kappaB: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil Steril. 2012;98:520–8.

    PubMed  Google Scholar 

  101. Sakamoto Y, Harada T, Horie S, Iba Y, Taniguchi F, Yoshida S, Iwabe T, Terakawa N. Tumor necrosis factor-alpha-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-kappa B activation: gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J Clin Endocrinol Metab. 2003;88:730–5.

    CAS  PubMed  Google Scholar 

  102. Ohama Y, Harada T, Iwabe T, Taniguchi F, Takenaka Y, Terakawa N. Peroxisome proliferator-activated receptor-gamma ligand reduced tumor necrosis factor-alpha-induced interleukin-8 production and growth in endometriotic stromal cells. Fertil Steril. 2008;89:311–7.

    CAS  PubMed  Google Scholar 

  103. Horie S, Harada T, Mitsunari M, Taniguchi F, Iwabe T, Terakawa N. Progesterone and progestational compounds attenuate tumor necrosis factor alpha-induced interleukin-8 production via nuclear factor kappa B inactivation in endometriotic stromal cells. Fertil Steril. 2005;83:1530–5.

    CAS  PubMed  Google Scholar 

  104. González-Ramos R, Van Langendonckt A, Defrère S, Lousse JC, Mettlen M, Guillet A, Donnez J. Agents blocking the nuclear factor-kappaB pathway are effective inhibitors of endometriosis in an in vivo experimental model. Gynecol Obstet Invest. 2008;65:174–86.

    PubMed  Google Scholar 

  105. Takai E, Taniguchi F, Nakamura K, Uegaki T, Iwabe T, Harada T. Parthenolide reduces cell proliferation and prostaglandin E2 synthesis in human endometriotic stromal cells and inhibits development of endometriosis in the murine model. Fertil Steril. 2013;100(4):1170–8.

    CAS  PubMed  Google Scholar 

  106. Defrère S, González-Ramos R, Lousse JC, Colette S, Donnez O, Donnez J, Van Langendonckt A. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol Histopathol. 2011;26:1083–92.

    PubMed  Google Scholar 

  107. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 1999;398:252–6.

    CAS  PubMed  Google Scholar 

  108. Taniguchi F, Harada T, Miyakoda H, Iwabe T, Deura I, Tagashira Y, Miyamoto A, Watanabe A, Suou K, Uegaki T, Terakawa N. TAK1 activation for cytokine synthesis and proliferation of endometriotic cells. Mol Cell Endocrinol. 2009;307(1–2):196–204.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomio Iwabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Iwabe, T., Harada, T. (2014). Inflammation and Cytokines in Endometriosis. In: Harada, T. (eds) Endometriosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54421-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54421-0_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54420-3

  • Online ISBN: 978-4-431-54421-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics