Skip to main content

Role of Nerve Fibres in Endometriosis

  • Chapter
  • First Online:
  • 2339 Accesses

Abstract

Endometriosis is an oestrogen-dependent inflammatory disease. Endometriosis is often associated with pain symptoms such as dysmenorrhoea, dyspareunia, dyschezia, dysuria and low back pain. Although increased immune cells in peritoneal fluid, adhesions, retrograde menstruation and prostaglandins are considered to be causes of pain symptoms in endometriosis, the underlying mechanisms by which pain is generated still remain unknown. Recently numerous studies have focused on nerve fibres and neurotrophins in eutopic endometrium and endometriotic lesions from women with endometriosis as well as in animal models as a source of pain generation. Nerve fibres in eutopic and ectopic endometrium may be activated and/or sensitised by many inflammatory mediators to cause pain and tenderness. Neurotrophins are known to regulate the survival, development and function of nerve fibres. However, many other molecules may act as a neurotrophic factor in endometriosis. Increased numbers of nerve fibres, increased amount of neurotrophins and different types of nerve fibres in endometriosis may explain why women with endometriosis experience pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adrienne ED, Ardem P. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120:3760–72.

    Google Scholar 

  2. Harkins SW, Davis MD, Bush FM, Kasberger J. Suppression of first pain and slow temporal summation of second pain in relation to age. J Gerontol A Biol Sci Med Sci. 1996;51:M260–5.

    CAS  PubMed  Google Scholar 

  3. Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron. 1997;19:849–61.

    CAS  PubMed  Google Scholar 

  4. Miraucourt LS, Dallel R, Voisin DL. Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons. PLoS One. 2007;2:e1116.

    PubMed Central  PubMed  Google Scholar 

  5. Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol. 1995;45:1–98.

    CAS  PubMed  Google Scholar 

  6. Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. 2003;139:1479–88.

    PubMed  Google Scholar 

  7. Le Greves P, Nyberg F, Terenius L, Hokfelt T. Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur J Pharmacol. 1985;115:309–11.

    PubMed  Google Scholar 

  8. Wilissius T. Cerebri anatome nervorumque descriptio et usus. I Opra Omnia. Geneva; 1680. p. 1.

    Google Scholar 

  9. Kilian FM. Ztschr F Rat Med. 1851;10:41.

    Google Scholar 

  10. Frankenhauser F. Die nerven der Gebärmutter und ihre Endigungen in der glatten Muskelfascrn: Ein Beitrag zur Anatomie und Gynäkologie, Insug. Dissert, Jcna, Fr. Manke; 1867.

    Google Scholar 

  11. Patenko T. Zentralbl F Gynäk. 1880;19:442.

    Google Scholar 

  12. Kostlin R. Die Nervendigungen in den weiblichen Geschlechtsorganen. Fortschr Med. 1894;12:411–21.

    Google Scholar 

  13. Clivio I. Contributo alla conoscenza delle terminazioni nervose dell’utero, Pavia, tipog e legat.coop; 1894.

    Google Scholar 

  14. Von Gawronsky N. Arch F Gynäk. 1894;47:271.

    Google Scholar 

  15. Labhardt A. Arch F Gynäk. 1906;80:135.

    Google Scholar 

  16. Mabuchi K. Mitt. a. d. med. Fak. d. k. Univ. Tokyo; 1924. 81: 385.

    Google Scholar 

  17. Dahl W. Ztschr F Geburtsh U Gynäk. 1916;78:539.

    Google Scholar 

  18. Stöhr P. In: von Möllendorff W, editors. Handbuch der mikroscopischen Anatomie des Menschen. Berlin: Julius Springer; 1928. 4(1):393.

    Google Scholar 

  19. Davis AA. J Obst Gynaec Brit Emp. 1933;40:481.

    Google Scholar 

  20. Brown WH, Hirch EF. The intrinsic nerves of the immature human uterus. Am J Pathol. 1941;17:731–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. State D, Hirsch E. The distribution of the nerves to the adult endometrium. Arch Pathol. 1941;32:939.

    Google Scholar 

  22. Koppen K. Results of a histologic study of uterine innervation. Arch Gynakol. 1950;177:354–91.

    CAS  PubMed  Google Scholar 

  23. Stöhr PH Jr. Mikroskopische Anatomie des vegetativcn Nervensystems. In: Handbuch der mikroskopischen Anatomic des Menschen, Bd.IV/5, Nervensystem. Berlin-Göttingen-Haidelberg: Springer; 1957.

    Google Scholar 

  24. Krantz KE. Innervation of the human uterus. Ann N Y Acad Sci. 1959;75:770–84.

    CAS  PubMed  Google Scholar 

  25. Witt HJ. Strunkturelementc und funktionelle Gesamtheit des Endometriuma. Lichtoptische Morphologie. I. Das normale menschliche Endometrium. Hrsg. V. H. Schmidt-Matthiesen. Stuttgart: Georg Thieme; 1963.

    Google Scholar 

  26. Lerner EJ, Jaffe M, Ree HJ, McDuff Jr HC. Proliferation of myometrial nerves in a patient with severe dysmenorrhea. R I Med J. 1985;68:265–7.

    PubMed  Google Scholar 

  27. Quinn MJ, Kirk N. Differences in uterine innervation at hysterectomy. Am J Obstet Gynecol. 2002;187:1515–9. discussion 1519–20.

    PubMed  Google Scholar 

  28. Samuelson UE, Dalsgaard CJ, Lundberg JM, Hokfelt T. Calcitonin gene-related peptide inhibits spontaneous contractions in human uterus and fallopian tube. Neurosci Lett. 1985;62:225–30.

    CAS  PubMed  Google Scholar 

  29. Heinrich D, Reinecke M, Forssmann WG. Peptidergic innervation of the human and guinea pig uterus. Arch Gynecol. 1986;237:213–9.

    CAS  PubMed  Google Scholar 

  30. Lynch EM, Wharton J, Bryant MG, Bloom SR, Polak JM, Elder MG. The differential distribution of vasoactive intestinal polypeptide in the normal human female genital tract. Histochemistry. 1980;67:169–77.

    CAS  PubMed  Google Scholar 

  31. Helm G, Ottesen B, Fahrenkrug J, Larsen JJ, Owman C, Sjoberg NO, Stolberg B, Sundler F, et al. Vasoactive intestinal polypeptide (VIP) in the human female reproductive tract: distribution and motor effects. Biol Reprod. 1981;25:227–34.

    CAS  PubMed  Google Scholar 

  32. Bae SE, Corcoran BM, Watson ED. Immunohistochemical study of the distribution of adrenergic and peptidergic innervation in the equine uterus and the cervix. Reproduction. 2001;122:275–82.

    CAS  PubMed  Google Scholar 

  33. Shew RL, Papka RE, McNeill DL. Calcitonin gene-related peptide in the rat uterus: presence in nerves and effects on uterine contraction. Peptides. 1990;11:583–9.

    CAS  PubMed  Google Scholar 

  34. Collins JJ, Wilson K, Fischer-Colbrie R, Papka RE. Distribution and origin of secretoneurin-immunoreactive nerves in the female rat uterus. Neuroscience. 2000;95:255–64.

    CAS  PubMed  Google Scholar 

  35. Houdeau E, Prudhomme MJ, Rousseau JP. Regional difference in the distribution of vasoactive intestinal polypeptide-immunoreactive nerve fibres along the uterus and between myometrial muscle layers in the rat. Histochem J. 1998;30:525–9.

    CAS  PubMed  Google Scholar 

  36. Rodriguez R, Pozuelo JM, Martin R, Arriazu R, Santamaria L. Stereological quantification of nerve fibers immunoreactive to PGP 9.5, NPY, and VIP in rat prostate during postnatal development. J Androl. 2005;26:197–204.

    CAS  PubMed  Google Scholar 

  37. Renegar RH, Rexroad Jr CE. Uterine adrenergic and cholinesterase-positive nerves and myometrial catecholamine concentrations during pregnancy in sheep. Acta Anat (Basel). 1990;137:373–81.

    CAS  Google Scholar 

  38. Papka RE, Cotton JP, Traurig HH. Comparative distribution of neuropeptide tyrosine-, vasoactive intestinal polypeptide-, substance P-immunoreactive, acetylcholinesterase-positive and noradrenergic nerves in the reproductive tract of the female rat. Cell Tissue Res. 1985;242:475–90.

    CAS  PubMed  Google Scholar 

  39. Otsuka M, Konishi S, Yanagisawa M, Tsunoo A, Akagi H. Role of substance P as a sensory transmitter in spinal cord and sympathetic ganglia. Ciba Found Symp. 1982;91:13–34.

    CAS  PubMed  Google Scholar 

  40. Sato S, Hayashi RH, Garfield RE. Mechanical responses of the rat uterus, cervix, and bladder to stimulation of hypogastric and pelvic nerves in vivo. Biol Reprod. 1989;40:209–19.

    CAS  PubMed  Google Scholar 

  41. Shew RL, Papka RE, McNeill DL, Yee JA. NADPH-diaphorase-positive nerves and the role of nitric oxide in CGRP relaxation of uterine contraction. Peptides. 1993;14:637–41.

    CAS  PubMed  Google Scholar 

  42. Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JF, et al. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci. 1984;4:3101–11.

    CAS  PubMed  Google Scholar 

  43. Onuoha GN, Alpar EK. Levels of vasodilators (SP, CGRP) and vasoconstrictor (NPY) peptides in early human burns. Eur J Clin Invest. 2001;31:253–7.

    CAS  PubMed  Google Scholar 

  44. Adham N, Schenk EA. Autonomic innervation of the rat vagina, cervix, and uterus and its cyclic cariation. Am J Obstet Gynecol. 1964;104:508–16.

    Google Scholar 

  45. Traurig HH, Papka RE. Autonomic efferent and visceral sensory innervation of the female reproductive system: special reference to the functional roles of nerves in reproductive organs. In: Maggi CA, editor. Nervous control of the urogenital system. Chur: Harwood Academic; 1993. p. 103–41.

    Google Scholar 

  46. Houdeau E, Boyer PA, Rousseau A, Rousseau JP. Coexpression of neuropeptide Y and vasoactive intestinal polypeptide in pelvic plexus neurones innervating the uterus and cervix in the rat. Cell Tissue Res. 1997;288:285–92.

    CAS  PubMed  Google Scholar 

  47. Stjernquist M, Owman C. Interaction of noradrenaline, NPY and VIP with the neurogenic cholinergic response of the rat uterine cervix in vitro. Acta Physiol Scand. 1987;131:553–62.

    CAS  PubMed  Google Scholar 

  48. Kirchmair R, Marksteiner J, Troger J, Mahata SK, Mahata M, Donnerer J, Amann R, Fischer-Colbrie R, Winkler H, Saria A. Human and rat primary C-fibre afferents store and release secretoneurin, a novel neuropeptide. Eur J Neurosci. 1994;6:861–8.

    CAS  PubMed  Google Scholar 

  49. Vera PL, HaaseE B, Schramm LP. Origins of the sympathetic innervation of the cervical end of the uterus in the rat. Brain Res. 1997;747:140–3.

    CAS  PubMed  Google Scholar 

  50. Quinn M, Armstrong G. Uterine nerve fibre proliferation in advanced endometriosis. J Obstet Gynaecol. 2004;24:932–3.

    CAS  PubMed  Google Scholar 

  51. Atwal G, du Plessis D, Armstrong G, Slade R, Quinn M. Uterine innervation after hysterectomy for chronic pelvic pain with, and without, endometriosis. Am J Obstet Gynecol. 2005;193:1650–5.

    PubMed  Google Scholar 

  52. Tokushige N, Markham R, Russell P, Fraser IS. High density of small nerve fibres in the functional layer of the endometrium in women with endometriosis. Hum Reprod. 2006;21:782–7.

    CAS  PubMed  Google Scholar 

  53. Tokushige N, Markham R, Russell P, Fraser IS. Different types of small nerve fibers in eutopic endometrium and myometrium in women with endometriosis. Fertil Steril. 2007;88:795–803.

    PubMed  Google Scholar 

  54. Tokushige N, Markham R, Russell P, Fraser IS. Effects of hormonal treatment on nerve fibers in endometrium and myometrium in women with endometriosis. Fertil Steril. 2008;90:1589–98.

    CAS  PubMed  Google Scholar 

  55. Palter SF, Olive DL. Office microlaparoscopy under local anesthesia for chronic pelvic pain. J Am Assoc Gynecol Laparosc. 1996;3:359–64.

    CAS  PubMed  Google Scholar 

  56. Demco L. Mapping the source and character of pain due to endometriosis by patient-assisted laparoscopy. J Am Assoc Gynecol Laparosc. 1998;5:241–5.

    CAS  PubMed  Google Scholar 

  57. Almeida Jr OD, Val-Gallas JM. Conscious pain mapping. J Am Assoc Gynecol Laparosc. 1997;4:587–90.

    PubMed  Google Scholar 

  58. Howard FM, El-Minawi AM, Sanchez RA. Conscious pain mapping by laparoscopy in women with chronic pelvic pain. Obstet Gynecol. 2000;96:934–9.

    CAS  PubMed  Google Scholar 

  59. Tamburro S, Canis M, Albuisson E, Dechelotte P, Darcha C, Mage G. Expression of transforming growth factor beta1 in nerve fibers is related to dysmenorrhea and laparoscopic appearance of endometriotic implants. Fertil Steril. 2003;80:1131–6.

    PubMed  Google Scholar 

  60. Pizzo A, Salmeri FM, Ardita FV, Sofo V, Tripepi M, Marsico S. Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol Obstet Invest. 2002;54:82–7.

    CAS  PubMed  Google Scholar 

  61. Tulandi T, Felemban A, Chen MF. Nerve fibers and histopathology of endometriosis-harboring peritoneum. J Am Assoc Gynecol Laparosc. 2001;8:95–8.

    CAS  PubMed  Google Scholar 

  62. Quinn M, Kirk N. Uterosacral nerve fibre proliferation in parous endometriosis. J Obstet Gynaecol. 2004;24:189–90.

    CAS  PubMed  Google Scholar 

  63. Berkley KJ, Dmitrieva N, Curtis KS, Papka RE. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A. 2004;101:11094–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Tokushige N, Markham R, Russell P, Fraser IS. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21:3001–7.

    CAS  PubMed  Google Scholar 

  65. Tokushige N, Markham R, Russell P, Fraser IS. Effect of progestogens and combined oral contraceptives on nerve fibers in peritoneal endometriosis. Fertil Steril. 2009;92:1234–9.

    CAS  PubMed  Google Scholar 

  66. Mechsner S, Schwarz J, Thode J, Loddenkemper C, Salomon DS, Ebert AD. Growth-associated protein 43-positive sensory nerve fibers accompanied by immature vessels are located in or near peritoneal endometriotic lesions. Fertil Steril. 2007;88:581–7.

    PubMed  Google Scholar 

  67. Mechsner S, Kaiser A, Kopf A, Gericke C, Ebert A, Bartley J. A pilot study to evaluate the clinical relevance of endometriosis-associated nerve fibers in peritoneal endometriotic lesions. Fertil Steril. 2009;92:1856–61.

    PubMed  Google Scholar 

  68. Alvarez P, Chen X, Hendrich J, Irwin JC, Green PG, Giudice LC, Levine JD. Ectopic uterine tissue as a chronic pain generator. Neuroscience. 2012;225:269–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Koninckx PR, Meuleman C, Demeyere S, Lesaffre E, Cornillie FJ. Suggestive evidence that pelvic endometriosis is a progressive disease, whereas deeply infiltrating endometriosis is associated with pelvic pain. Fertil Steril. 1991;55:759–65.

    CAS  PubMed  Google Scholar 

  70. Anaf V, Chapron C, El Nakadi I, De Moor V, Simonart T, Noël JC. Pain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis. Fertil Steril. 2006;86:1336–43.

    PubMed  Google Scholar 

  71. Vercellini P, Somigliana E, Viganò P, Abbiati A, Daguati R, Crosignani PG. Endometriosis: current and future medical therapies. Best Pract Res Clin Obstet Gynaecol. 2008;22:275–306.

    PubMed  Google Scholar 

  72. Wang G, Tokushige N, Markham R, Fraser IS. Rich innervation of deep infiltrating endometriosis. Hum Reprod. 2009;24:827–34.

    PubMed  Google Scholar 

  73. Ebert AD, Bartley J, David M. Aromatase inhibitors and cyclooxygenase-2 (COX-2) inhibitors in endometriosis: new questions–old answers? Eur J Obstet Gynecol Reprod Biol. 2005;122:144–50.

    CAS  PubMed  Google Scholar 

  74. Bergqvist A, Nejaty H, Froysa B, Bruse C, Carlberg M, Sjoblom P, Söder O. Production of interleukins 1beta, 6 and 8 and tumor necrosis factor alpha in separated and cultured endometrial and endometriotic stromal and epithelial cells. Gynecol Obstet Invest. 2000;50:1–6.

    CAS  PubMed  Google Scholar 

  75. Anaf V, Simon P, El Nakadi I, Fayt I, Simonart T, Buxant F, Noel JC. Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum Reprod. 2002;17:1895–900.

    PubMed  Google Scholar 

  76. Tingåker BK, Irestedt L. Changes in uterine innervation in pregnancy and during labour. Curr Opin Anaesthesiol. 2010;23:300–3.

    PubMed  Google Scholar 

  77. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487–517.

    CAS  PubMed  Google Scholar 

  78. Barde YA. The nerve growth factor family. Prog Growth Factor Res. 1990;2:237–48.

    CAS  PubMed  Google Scholar 

  79. Hohn A, Leibrock J, Bailey K, Barde YA. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990;344:339–41.

    CAS  PubMed  Google Scholar 

  80. Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron. 1991;6:845–58.

    CAS  PubMed  Google Scholar 

  81. Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology. 2011;115:189–204.

    PubMed Central  PubMed  Google Scholar 

  82. Meakin SO, Shooter EM. The nerve growth factor family of receptors. Trends Neurosci. 1992;15:323–31.

    CAS  PubMed  Google Scholar 

  83. Borghese B, Vaiman D, Mondon F, Mbaye M, Anaf V, Noël JC, de Ziegler D, Chapron C. Neurotrophins and pain in endometriosis. Gynecol Obstet Fertil. 2010;38:442–6.

    CAS  PubMed  Google Scholar 

  84. Browne AS, Yu J, Huang RP, Francisco AM, Sidell N, Taylor RN. Proteomic identification of neurotrophins in the eutopic endometrium of women with endometriosis. Fertil Steril. 2012;98:713–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Barcena de Arellano ML, Arnold J, Lang H, Vercellino GF, Chiantera V, Schneider A, Mechsner S. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine. 2013;62:253–61.

    CAS  PubMed  Google Scholar 

  86. Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 1996;19:514–20.

    CAS  PubMed  Google Scholar 

  87. Hunter DD, Myers AC, Undem BJ. Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons. Am J Respir Crit Care Med. 2000;161:1985–90.

    CAS  PubMed  Google Scholar 

  88. McMahon SB, Bennett DL, Priestley JV, Shelton DL. The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nat Med. 1995;1:774–80.

    CAS  PubMed  Google Scholar 

  89. Bennett DL, Koltzenburg M, Priestley JV, Shelton DL, McMahon SB. Endogenous nerve growth factor regulates the sensitivity of nociceptors in the adult rat. Eur J Neurosci. 1998;10:1282–91.

    CAS  PubMed  Google Scholar 

  90. Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation. 2002;106:2257–62.

    CAS  PubMed  Google Scholar 

  91. Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, Zappalà G, Pafumi C, et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 2002;16:1307–9.

    CAS  PubMed  Google Scholar 

  92. Kraemer R, Nguyen H, March KL, Hempstead B. NGF activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. Arterioscler Thromb Vasc Biol. 1999;19:1041–50.

    CAS  PubMed  Google Scholar 

  93. Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R. Nerve growth factor control of neuronal expression of angiogenic and vasoactive factors. Proc Natl Acad Sci U S A. 2001;98:4160–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Hull MA, Thomson JL, Hawkey CJ. Expression of cyclooxygenase 1 and 2 by human gastric endothelial cells. Gut. 1999;45:529–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lambiase A, Bracci-Laudiero L, Bonini S, Starace G, D'Elios MM, De Carli M, De Carli M, Aloe L. Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol. 1997;100:408–14.

    CAS  PubMed  Google Scholar 

  96. Nilsson G, Forsberg-Nilsson K, Xiang Z, Hallbook F, Nilsson K, Metcalfe DD. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol. 1997;27:2295–301.

    CAS  PubMed  Google Scholar 

  97. Kobayashi H, Gleich GJ, Butterfield JH, Kita H. Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood. 2002;99:2214–20.

    CAS  PubMed  Google Scholar 

  98. Barouch R, Kazimirsky G, Appel E, Brodie C. Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. J Leukoc Biol. 2001;69:1019–26.

    CAS  PubMed  Google Scholar 

  99. Frossard N, Freund V, Advenier C. Nerve growth factor and its receptors in asthma and inflammation. Eur J Pharmacol. 2004;500:453–65.

    CAS  PubMed  Google Scholar 

  100. Healy DL, Rogers PA, Hii L, Wingfield M. Angiogenesis: a new theory for endometriosis. Hum Reprod Update. 1998;4:736–40.

    CAS  PubMed  Google Scholar 

  101. Kim SH, Choi YM, Chae HD, Kim KR, Kim CH, Kang BM. Increased expression of endoglin in the eutopic endometrium of women with endometriosis. Fertil Steril. 2001;76:918–22.

    CAS  PubMed  Google Scholar 

  102. Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague–Dawley rats. Endocrinology. 1995;136:2320–4.

    CAS  PubMed  Google Scholar 

  103. Simpkins JW, Green PS, Gridley KE, Singh M, de Fiebre NC, Rajakumar G. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease. Am J Med. 1997;103:19S–25S.

    CAS  PubMed  Google Scholar 

  104. Sohrabji F, Miranda RC, Toran-Allerand CD. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995;92:11110–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Gibbs RB. Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Res. 1999;844:20–7.

    CAS  PubMed  Google Scholar 

  106. Krizsan-Agbas D, Pedchenko T, Hasan W, Smith PG. Oestrogen regulates sympathetic neurite outgrowth by modulating brain derived neurotrophic factor synthesis and release by the rodent uterus. Eur J Neurosci. 2003;18:2760–8.

    CAS  PubMed  Google Scholar 

  107. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci. 1999;19:2455–63.

    CAS  PubMed  Google Scholar 

  108. Patrone C, Andersson S, Korhonen L, Lindholm D. Estrogen receptor-dependent regulation of sensory neuron survival in developing dorsal root ganglion. Proc Natl Acad Sci U S A. 1999;96:10905–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Wilson ME, Dubal DB, Wise PM. Estradiol protects against injury-induced cell death in cortical explant cultures: a role for estrogen receptors. Brain Res. 2000;873:235–42.

    CAS  PubMed  Google Scholar 

  110. Bjorling DE, Beckman M, Clayton MK, Wang ZY. Modulation of nerve growth factor in peripheral organs by estrogen and progesterone. Neuroscience. 2002;110:155–67.

    CAS  PubMed  Google Scholar 

  111. Li B, Sheng X, Song M, Zhang H, Weng J, Zhang M, Hu X, Zhou J, Xu M, Weng Q, Watanabe G, Taya K. Expression of nerve growth factor and its receptors TrkA and p75 in the uterus of wild female ground squirrel (Citellus dauricus Brandt). Gen Comp Endocrinol. 2012;1(176):62–9.

    Google Scholar 

  112. Shi Z, Arai KY, Jin W, Weng Q, Watanabe G, Suzuki AK, Taya K. Expression of nerve growth factor and its receptors NTRK1 and TNFRSF1B is regulated by estrogen and progesterone in the uteri of golden hamsters. Biol Reprod. 2006;74:850–6.

    CAS  PubMed  Google Scholar 

  113. Pinto FM, Armesto CP, Magraner J, Trujillo M, Martin JD, Candenas ML. Tachykinin receptor and neutral endopeptidase gene expression in the rat uterus: characterization and regulation in response to ovarian steroid treatment. Endocrinology. 1999;140(6):2526–32.

    CAS  PubMed  Google Scholar 

  114. Sumino H, Ichikawa S, Kanda T, Sakamaki T, Nakamura T, Sato K, Kobayashi I, Nagai R. Hormone replacement therapy in postmenopausal women with essential hypertension increases circulating plasma levels of bradykinin. Am J Hypertens. 1999;12(1O Pt 1):1044–7.

    CAS  PubMed  Google Scholar 

  115. Papka RE, Storey-Workley M. Estrogen receptor-alpha and -beta coexist in a subpopulation of sensory neurons of female rat dorsal root ganglia. Neurosci Lett. 2002;319:71–4.

    CAS  PubMed  Google Scholar 

  116. Schaible HG, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain. 1993;55:5–54.

    CAS  PubMed  Google Scholar 

  117. Toyomoto M, Ohta M, Okumura K, Yano H, Matsumoto K, Inoue S, Hayashi K, Ikeda K. Prostaglandins are powerful inducers of NGF and BDNF production in mouse astrocyte cultures. FEBS Lett. 2004;562:211–5.

    CAS  PubMed  Google Scholar 

  118. Kanda N, Koike S, Watanabe S. Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. J Pharmacol Exp Ther. 2005;315:796–804.

    CAS  PubMed  Google Scholar 

  119. Ota H, Igarashi S, Sasaki M, Tanaka T. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis. Hum Reprod. 2001;16:561–6.

    CAS  PubMed  Google Scholar 

  120. Bartley J, Mechsner S, Beutler C, Halis G, Lange J, Ebert AD. COX-2-expression in extragenital endometriosis lesions as a novel therapeutical approach? Zentralbl Gynakol. 2003;125:252–5.

    CAS  PubMed  Google Scholar 

  121. Fagotti A, Ferrandina G, Fanfani F, Legge F, Lauriola L, Gessi M, Castelli P, Barbieri F, et al. Analysis of cyclooxygenase-2 (COX-2) expression in different sites of endometriosis and correlation with clinico-pathological parameters. Hum Reprod. 2004;19:393–7.

    CAS  PubMed  Google Scholar 

  122. Buchweitz O, Staebler A, Wulfing P, Hauzman E, Greb R, Kiesel L. COX-2 overexpression in peritoneal lesions is correlated with nonmenstrual chronic pelvic pain. Eur J Obstet Gynecol Reprod Biol. 2006;124:216–21.

    CAS  PubMed  Google Scholar 

  123. Chang SY, Ho YS. Immunohistochemical analysis of insulin-like growth factor I, insulin-like growth factor I receptor and insulin-like growth factor II in endometriotic tissue and endometrium. Acta Obstet Gynecol Scand. 1997;76:112–7.

    CAS  PubMed  Google Scholar 

  124. Kimpinski K, Mearow K. Neurite growth promotion by nerve growth factor and insulin-like growth factor-1 in cultured adult sensory neurons: role of phosphoinositide 3-kinase and mitogen activated protein kinase. J Neurosci Res. 2001;63:486–99.

    CAS  PubMed  Google Scholar 

  125. Jones DM, Tucker BA, Rahimtula M, Mearow KM. The synergistic effects of NGF and IGF-1 on neurite growth in adult sensory neurons: convergence on the PI 3-kinase signaling pathway. J Neurochem. 2003;86:1116–28.

    CAS  PubMed  Google Scholar 

  126. Ghahary A, Murphy LJ. Uterine insulin-like growth factor-I receptors: regulation by estrogen and variation throughout the estrous cycle. Endocrinology. 1989;125(2):597–604.

    CAS  PubMed  Google Scholar 

  127. Wilson ME. Effects of estradiol and exogenous insulin-like growth factor I (IGF-I) on the IGF-I axis during growth hormone inhibition and antagonism. J Clin Endocrinol Metab. 1998;83:4013–21.

    CAS  PubMed  Google Scholar 

  128. Watanabe H, Kanzaki H, Narukawa S, Inoue T, Katsuragawa H, Kaneko Y, Mori T. Bcl-2 and Fas expression in eutopic and ectopic human endometrium during the menstrual cycle in relation to endometrial cell apoptosis. Am J Obstet Gynecol. 1997;176:360–8.

    CAS  PubMed  Google Scholar 

  129. Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci. 1997;20:245–67.

    CAS  PubMed  Google Scholar 

  130. Hilton M, Middleton G, Davies AM. Bcl-2 influences axonal growth rate in embryonic sensory neurons. Curr Biol. 1997;7:798–800.

    CAS  PubMed  Google Scholar 

  131. Fernandez AM. Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci. 1999;11:2019–30.

    CAS  PubMed  Google Scholar 

  132. Cardona-Gomez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Brain Res Rev. 2001;37:320–34.

    CAS  PubMed  Google Scholar 

  133. Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinology. 2002;143:205–12.

    CAS  PubMed  Google Scholar 

  134. Singh M. Mechanisms of progesterone-induced neuroprotection. Ann N Y Acad Sci. 2005;1052:145–51.

    CAS  PubMed  Google Scholar 

  135. Sugawara J, Fukaya T, Murakami T, Yoshida H, Yajima A. Increased secretion of hepatocyte growth factor by eutopic endometrial stromal cells in women with endometriosis. Fertil Steril. 1997;68:468–72.

    CAS  PubMed  Google Scholar 

  136. Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 1997;11:3341–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Khan KN, Masuzaki H, Fujishita A, Kitajima M, Sekine I, Matsuyama T, Ishimaru T. Estrogen and progesterone receptor expression in macrophages and regulation of hepatocyte growth factor by ovarian steroids in women with endometriosis. Hum Reprod. 2005;20:2004–13.

    CAS  PubMed  Google Scholar 

  138. Ota H, Igarashi S, Hatazawa J, Tanaka T. Distribution of heat shock proteins in eutopic and ectopic endometrium in endometriosis and adenomyosis. Fertil Steril. 1997;68:23–8.

    CAS  PubMed  Google Scholar 

  139. Plumier JC, Hopkins DA, Robertson HA, Currie RW. Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J Comp Neurol. 1997;384:409–28.

    CAS  PubMed  Google Scholar 

  140. Costigan M, Mannion RJ, Kendall G, Lewis SE, Campagna JA, Coggeshall RE, Meridith-Middleton J, Tate S, et al. Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci. 1998;18:5891–900.

    CAS  PubMed  Google Scholar 

  141. Lewis SE, Mannion RJ, White FA, Coggeshall RE, Beggs S, Costigan M, Martin JL, Dillmann WH, et al. A role for HSP27 in sensory neuron survival. J Neurosci. 1999;19:8945–53.

    CAS  PubMed  Google Scholar 

  142. Tang PZ, Gannon MJ, Andrew A, Miller D. Evidence for oestrogenic regulation of heat shock protein expression in human endometrium and steroid-responsive cell lines. Eur J Endocrinol. 1995;133:598–605.

    CAS  PubMed  Google Scholar 

  143. Wing LY, Chuang PC, Wu MH, Chen HM, Tsai SJ. Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of estrogen. J Clin Endocrinol Metab. 2003;88:5547–54.

    CAS  PubMed  Google Scholar 

  144. Kanda T, Iwasaki T, Nakamura S, Kurokawa T, Ikeda K, Mizusawa H. Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res. 2000;876:22–30.

    CAS  PubMed  Google Scholar 

  145. Novella-Maestre E, Herraiz S, Vila-Vives JM, Carda C, Ruiz-Sauri A, Pellicer A. Effect of antiangiogenic treatment on peritoneal endometriosis-associated nerve fibers. Fertil Steril. 2012;98:1209–17.

    CAS  PubMed  Google Scholar 

  146. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    CAS  PubMed  Google Scholar 

  147. Machado DE, Abrao MS, Berardo PT, Takiya CM, Nasciutti LE. Vascular density and distribution of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) are significantly higher in patients with deeply infiltrating endometriosis affecting the rectum. Fertil Steril. 2008;90:148–55.

    CAS  PubMed  Google Scholar 

  148. Pupo-Nogueira A, de Oliveira RM, Petta CA, Podgaec S, Dias Jr JA, Abrao MS. Vascular endothelial growth factor concentrations in the serum and peritoneal fluid of women with endometriosis. Int J Gynaecol Obstet. 2007;99:33–7.

    CAS  PubMed  Google Scholar 

  149. Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci. 2000;12:4243–54.

    CAS  PubMed  Google Scholar 

  150. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci. 1999;19:5731–40.

    CAS  PubMed  Google Scholar 

  151. Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat. 2000;197(Pt 4):591–605.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Barcz E, Rózewska ES, Kaminski P, Demkow U, Bobrowska K, Marianowski L. Angiogenic activity and IL-8 concentrations in peritoneal fluid and sera in endometriosis. Int J Gynaecol Obstet. 2002;79:229–35.

    CAS  PubMed  Google Scholar 

  153. Khan KN, Masuzaki H, Fujishita A, Kitajima M, Hiraki K, Miura S, Sekine I, Ishimaru T. Peritoneal fluid and serum levels of hepatocyte growth factor may predict the activity of endometriosis. Acta Obstet Gynecol Scand. 2006;85:458–66.

    CAS  PubMed  Google Scholar 

  154. Matsuzaki S, Murakami T, Uehara S, Yokomizo R, Noda T, Kimura Y, Okamura K. Erythropoietin concentrations are elevated in the peritoneal fluid of women with endometriosis. Hum Reprod. 2001;16:945–8.

    CAS  PubMed  Google Scholar 

  155. Suzumori N, Zhao XX, Suzumori K. Elevated angiogenin levels in the peritoneal fluid of women with endometriosis correlate with the extent of the disorder. Fertil Steril. 2004;82:93–6.

    CAS  PubMed  Google Scholar 

  156. Kats R, Collette T, Metz CN, Akoum A. Marked elevation of macrophage migration inhibitory factor in the peritoneal fluid of women with endometriosis. Fertil Steril. 2002;78:69–76.

    PubMed  Google Scholar 

  157. Szamatowicz J, Laudański P, Tomaszewska I, Szamatowicz M. Chemokine growth-regulated-alpha: a possible role in the pathogenesis of endometriosis. Gynecol Endocrinol. 2002;16:137–41.

    CAS  PubMed  Google Scholar 

  158. Maas JW, Groothuis PG, Dunselman GA, de Goeij AF, Struijker-Boudier HA, Evers JL. Development of endometriosis-like lesions after transplantation of human endometrial fragments onto the chick embryo chorioallantoic membrane. Hum Reprod. 2001;16:627–31.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsuko Tokushige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Tokushige, N. (2014). Role of Nerve Fibres in Endometriosis. In: Harada, T. (eds) Endometriosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54421-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54421-0_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54420-3

  • Online ISBN: 978-4-431-54421-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics