Skip to main content

Targeting Pro-Angiogenic TGF-β Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
  • 1212 Accesses

Abstract

The recently developed targeted anti-angiogenic agents have been introduced into clinical practice over the course of the past decade. High hopes were placed on targeting the VEGF signaling pathway in endothelial cells following the preceding successful drug development in the preclinical setting. Indeed, the therapeutic efficacy observed in mouse models of cancer has in some cases been translated into clinical benefit for patients. Nevertheless, many anti-angiogenic therapies have failed to provide substantial improvement in survival in large phase III clinical trials. In the search for attractive and complementary angiogenic signaling pathways, the TGF-β family stands out as one of the most interesting. Our expanding knowledge on TGF-β signaling in the tumor vasculature has led to the development of specific inhibitors targeting TGF-β, ALK1, and endoglin. Many clinical trials exploring the concept of targeting pro-angiogenic TGF-β signaling are currently underway, and preliminary reports are encouraging. Here, we will discuss opportunities and challenges of targeting the TGF-β system for anti-angiogenic therapy of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALK:

Activin receptor-like kinase

BMP:

Bone morphogenetic proteins

EC:

Endothelial cell

HHT:

Hereditary hemorrhagic telangiectasia

TGF-β:

Transforming growth factor-β

VEGF:

Vascular endothelial growth factor

References

  • Akagi K, Ikeda Y, Sumiyoshi Y et al (2002) Estimation of angiogenesis with anti-CD105 immunostaining in the process of colorectal cancer development. Surgery 131:S109–S113

    Article  PubMed  Google Scholar 

  • Alexander JM, Bikkal HA, Zervas NT et al (1996) Tumor-specific expression and alternate splicing of messenger ribonucleic acid encoding activin/transforming growth factor-β receptors in human pituitary adenomas. J Clin Endocrinol Metab 81:783–790

    Article  PubMed  CAS  Google Scholar 

  • Anderberg C, Cunha SI, Zhai Z, Cortez E, Pardali E, Johnson JR, Franco M, Páez-Ribes M, Cordiner R, Fuxe J, Johansson BR, Goumans MJ, Casanovas O, Ten Dijke P, Arthur HM, Pietras K (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210(3):563–579

    Article  PubMed  CAS  Google Scholar 

  • Beresford MJ, Harris AL, Ah-See M et al (2006) The relationship of the neo-angiogenic marker, endoglin, with response to neoadjuvant chemotherapy in breast cancer. Br J Cancer 95:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu C, Lopez-Novoa JM, Quintanilla M (2009) The emerging role of TGF-β superfamily coreceptors in cancer. Biochim Biophys Acta 1792:954–973

    Article  PubMed  CAS  Google Scholar 

  • Bidart M, Ricard N, Levet S et al (2012) BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 69:313–324

    Article  PubMed  CAS  Google Scholar 

  • Bierie B, Moses HL (2006a) TGF-β and cancer. Cytokine Growth Factor Rev 17:29–40

    Article  PubMed  CAS  Google Scholar 

  • Bierie B, Moses HL (2006b) Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    Article  PubMed  CAS  Google Scholar 

  • Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807

    Article  PubMed  CAS  Google Scholar 

  • Bogdahn U, Hau P, Stockhammer G et al (2011) Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13:132–142

    Article  PubMed  CAS  Google Scholar 

  • Bose P, Holter JL, Selby GB (2009) Bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med 360:2143–2144

    Article  PubMed  CAS  Google Scholar 

  • Bredow S, Lewin M, Hofmann B et al (2000) Imaging of tumour neovasculature by targeting the TGF-β binding receptor endoglin. Eur J Cancer 36:675–681

    Article  PubMed  CAS  Google Scholar 

  • Cannon JE, Upton PD, Smith JC, Morrell NW (2010) Intersegmental vessel formation in zebrafish: requirement for VEGF but not BMP signalling revealed by selective and non-selective BMP antagonists. Br J Pharmacol 161:140–149

    Article  PubMed  CAS  Google Scholar 

  • Carvalho RL, Itoh F, Goumans MJ et al (2007) Compensatory signalling induced in the yolk sac vasculature by deletion of TGFβ receptors in mice. J Cell Sci 120:4269–4277

    Article  PubMed  CAS  Google Scholar 

  • Castonguay R, Werner ED, Matthews RG et al (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286:30034–30046

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Wahl SM (2002) TGF-β: receptors, signaling pathways and autoimmunity. Curr Dir Autoimmun 5:62–91

    Article  PubMed  CAS  Google Scholar 

  • Chow A, Arteaga CL, Wang SE (2011) When tumor suppressor TGFβ meets the HER2 (ERBB2) oncogene. J Mammary Gland Biol Neoplasia 16:81–88

    Article  PubMed  Google Scholar 

  • Costello B, Li C, Duff S et al (2004) Perfusion of 99Tcm-labeled CD105 Mab into kidneys from patients with renal carcinoma suggests that CD105 is a promising vascular target. Int J Cancer 109:436–441

    Article  PubMed  CAS  Google Scholar 

  • Craft CS, Romero D, Vary CP, Bergan RC (2007) Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene 26:7240–7250

    Article  PubMed  CAS  Google Scholar 

  • Cunha SI, Pietras K (2011) ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117:6999–7006

    Article  PubMed  CAS  Google Scholar 

  • Cunha SI, Pardali E, Thorikay M et al (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207:85–100

    Article  PubMed  CAS  Google Scholar 

  • DaCosta BS, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752

    Article  Google Scholar 

  • Duwel A, Eleno N, Jerkic M et al (2007) Reduced tumor growth and angiogenesis in endoglin-haploinsufficient mice. Tumour Biol 28:1–8

    PubMed  Google Scholar 

  • Finnson KW, Parker WL, ten Dijke P et al (2008) ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res 23:896–906

    Article  PubMed  CAS  Google Scholar 

  • Flieger D, Hainke S, Fischbach W (2006) Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol 85:631–632

    Article  PubMed  Google Scholar 

  • Fonsatti E, Jekunen AP, Kairemo KJ et al (2000) Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res 6:2037–2043

    PubMed  CAS  Google Scholar 

  • Fonsatti E, Sigalotti L, Arslan P et al (2003) Emerging role of endoglin (CD105) as a marker of angiogenesis with clinical potential in human malignancies. Curr Cancer Drug Targets 3:427–432

    Article  PubMed  CAS  Google Scholar 

  • Fonsatti E, Nicolay HJ, Altomonte M et al (2010) Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 86:12–19

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Ewing CM, Chan DY et al (2009) Endoglin (CD105) as a urinary and serum marker of prostate cancer. Int J Cancer 124:664–669

    Article  PubMed  CAS  Google Scholar 

  • Gaspar NJ, Li L, Kapoun AM et al (2007) Inhibition of transforming growth factor β signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol 72:152–161

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Rajeev V, Ray P et al (2006) Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-β type I receptor kinase in vivo. Clin Cancer Res 12:4315–4330

    Article  PubMed  CAS  Google Scholar 

  • Hu-Lowe DD, Chen E, Zhang L et al (2011) Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res 71:1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424

    Article  PubMed  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Xu L, di Tomaso E et al (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280

    Article  PubMed  CAS  Google Scholar 

  • Jubb AM, Hurwitz HI, Bai W et al (2006) Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24:217–227

    Article  PubMed  CAS  Google Scholar 

  • Jubb AM, Turley H, Moeller HC et al (2009) Expression of δ-like ligand 4 (Dll4) and markers of hypoxia in colon cancer. Br J Cancer 101:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Karam JA, Svatek RS, Karakiewicz PI et al (2008) Use of preoperative plasma endoglin for prediction of lymph node metastasis in patients with clinically localized prostate cancer. Clin Cancer Res 14:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Kuhnert F, Kirshner JR, Thurston G (2011) Dll4-Notch signaling as a therapeutic target in tumor angiogenesis. Vasc Cell 3:20

    Article  PubMed  CAS  Google Scholar 

  • Lahn M, Kloeker S, Berry BS (2005) TGF-β inhibitors for the treatment of cancer. Expert Opin Investig Drugs 14:629–643

    Article  PubMed  CAS  Google Scholar 

  • Landis MD, Seachrist DD, Montanez-Wiscovich ME et al (2005) Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-β signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene 24:5173–5190

    Article  PubMed  CAS  Google Scholar 

  • Li C, Guo B, Wilson PB et al (2000) Plasma levels of soluble CD105 correlate with metastasis in patients with breast cancer. Int J Cancer 89:122–126

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Sainson RC, Oon CE et al (2011) DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res 71:6073–6083

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Jovanovic B, Pins M et al (2002) Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion. Oncogene 21:8272–8281

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Kobayashi K, van Dinther M et al (2009) VEGF and inhibitors of TGFβ type-I receptor kinase synergistically promote blood-vessel formation by inducing α5-integrin expression. J Cell Sci 122:3294–3302

    Article  PubMed  CAS  Google Scholar 

  • Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, Newman JH, Phillips JA 3rd, Soubrier F, Trembath RC, Chung WK (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S32–S42

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Gomis RR (2006) The logic of TGFβ signaling. FEBS Lett 580:2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Medicherla S, Li L, Ma JY et al (2007) Antitumor activity of TGF-β inhibitor is dependent on the microenvironment. Anticancer Res 27:4149–4157

    PubMed  CAS  Google Scholar 

  • Mitchell A, Adams LA, MacQuillan G et al (2008) Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl 14:210–213

    Article  PubMed  Google Scholar 

  • Mitchell D, Pobre EG, Mulivor AW et al (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9:379–388

    Article  PubMed  CAS  Google Scholar 

  • Mohammad KS, Javelaud D, Fournier PG et al (2011) TGF-β-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 71:175–184

    Article  PubMed  CAS  Google Scholar 

  • Muraoka RS, Koh Y, Roebuck LR et al (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor β1. Mol Cell Biol 23:8691–8703

    Article  PubMed  CAS  Google Scholar 

  • Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor β in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11:937s–943s

    PubMed  CAS  Google Scholar 

  • Niessen K, Zhang G, Ridgway JB et al (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115:1654–1661

    Article  PubMed  CAS  Google Scholar 

  • Noguera-Troise I, Daly C, Papadopoulos NJ et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Panchenko MP, Williams MC, Brody JS, Yu Q (1996) Type I receptor serine-threonine kinase preferentially expressed in pulmonary blood vessels. Am J Physiol 270:L547–L558

    PubMed  CAS  Google Scholar 

  • Patel NS, Li JL, Generali D et al (2005) Up-regulation of δ-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65:8690–8697

    Article  PubMed  CAS  Google Scholar 

  • Peng SB, Yan L, Xia X et al (2005) Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44:2293–2304

    Article  PubMed  CAS  Google Scholar 

  • Perez-Gomez E, Del Castillo G, Juan Francisco S et al (2010) The role of the TGF-β coreceptor endoglin in cancer. Sci World J 10:2367–2384

    Article  CAS  Google Scholar 

  • Ponten F, Jirstrom K, Uhlen M (2008) The Human Protein Atlas – a tool for pathology. J Pathol 216:387–393

    Article  PubMed  CAS  Google Scholar 

  • Ricard N, Ciais D, Levet S et al (2012) BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119(25):6162–6171

    Google Scholar 

  • Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087

    Article  PubMed  CAS  Google Scholar 

  • Roelen BA, van Rooijen MA, Mummery CL (1997) Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Dev Dyn 209:418–430

    Article  PubMed  CAS  Google Scholar 

  • Ruzek MC, Hawes M, Pratt B et al (2003) Minimal effects on immune parameters following chronic anti-TGF-β monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 25:235–257

    Article  PubMed  CAS  Google Scholar 

  • Schlingensiepen KH, Jaschinski F, Lang SA et al (2010) Transforming growth factor-β 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci 102:1193–1200

    Article  Google Scholar 

  • Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93:682–689

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Hong KH, Oh SP (2006) Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab Invest 86:116–129

    Article  PubMed  CAS  Google Scholar 

  • Seon BK, Matsuno F, Haruta Y et al (1997) Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res 3:1031–1044

    PubMed  CAS  Google Scholar 

  • Seon BK, Haba A, Matsuno F et al (2010) Endoglin-targeted cancer therapy. Curr Drug Deliv 8:135–143

    Article  Google Scholar 

  • Shao ES, Lin L, Yao Y, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114:2197–2206

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Harada N, Greco WR et al (2006) Antiangiogenic chimeric anti-endoglin (CD105) antibody: pharmacokinetics and immunogenicity in nonhuman primates and effects of doxorubicin. Cancer Immunol Immunother 55:140–150

    Article  PubMed  CAS  Google Scholar 

  • Siegel PM, Shu W, Cardiff RD et al (2003) Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100:8430–8435

    Article  PubMed  CAS  Google Scholar 

  • Stahel RA, Zangemeister-Wittke U (2003) Antisense oligonucleotides for cancer therapy-an overview. Lung Cancer 41(Suppl 1):S81–S88

    Article  PubMed  Google Scholar 

  • Tabata M, Kondo M, Haruta Y, Seon BK (1999) Antiangiogenic radioimmunotherapy of human solid tumors in SCID mice using (125)I-labeled anti-endoglin monoclonal antibodies. Int J Cancer 82:737–742

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Haba A, Matsuno F, Seon BK (2001a) Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res 61:7846–7854

    PubMed  CAS  Google Scholar 

  • Takahashi N, Kawanishi-Tabata R, Haba A et al (2001b) Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin. Clin Cancer Res 7:524–532

    PubMed  CAS  Google Scholar 

  • Tamm I, Wagner M (2006) Antisense therapy in clinical oncology: preclinical and clinical experiences. Mol Biotechnol 33:221–238

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Dorken B, Hartmann G (2001) Antisense therapy in oncology: new hope for an old idea? Lancet 358:489–497

    Article  PubMed  CAS  Google Scholar 

  • Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    Article  PubMed  CAS  Google Scholar 

  • Ungefroren H, Schniewind B, Groth S et al (2007) Antitumor activity of ALK1 in pancreatic carcinoma cells. Int J Cancer 120:1641–1651

    Article  PubMed  CAS  Google Scholar 

  • Vallieres L (2009) Trabedersen, a TGFβ2-specific antisense oligonucleotide for the treatment of malignant gliomas and other tumors overexpressing TGFβ2. IDrugs 12:445–453

    PubMed  CAS  Google Scholar 

  • van Meeteren LA, Thorikay M, Bergqvist S et al (2012) Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287:18551–18561

    Article  PubMed  Google Scholar 

  • Venkatesha S, Toporsian M, Lam C et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649

    Article  PubMed  CAS  Google Scholar 

  • Vogt J, Traynor R, Sapkota GP (2011) The specificities of small molecule inhibitors of the TGFβ and BMP pathways. Cell Signal 23:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Walker EJ, Su H, Shen F et al (2012) Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 43(7):1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Wang SE, Xiang B, Zent R et al (2009) Transforming growth factor β induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res 69:475–482

    Article  PubMed  CAS  Google Scholar 

  • Watabe T, Nishihara A, Mishima K et al (2003) TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol 163:1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Wiercinska E, Wickert L, Denecke B et al (2006) Id1 is a critical mediator in TGF-β-induced transdifferentiation of rat hepatic stellate cells. Hepatology 43:1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom P, Lissbrant IF, Stattin P et al (2002) Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 51:268–275

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Robinson CE, Fong HW et al (1995) Cloning and characterization of the murine activin receptor like kinase-1 (ALK-1) homolog. Biochem Biophys Res Commun 216:78–83

    Article  PubMed  CAS  Google Scholar 

  • Yang YA, Dukhanina O, Tang B et al (2002) Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Yu PB, Deng DY, Lai CS et al (2008a) BMP type I receptor inhibition reduces heterotopic ossification. Nat Med 14:1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Yu PB, Hong CC, Sachidanandan C et al (2008b) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4:33–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Pietras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Pietras, K., Cunha, S.I. (2013). Targeting Pro-Angiogenic TGF-β Signaling in the Tumor Microenvironment. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_19

Download citation

Publish with us

Policies and ethics