Skip to main content

Smart Nanofibers

  • Chapter
  • First Online:
Smart Biomaterials

Abstract

Over the past few years, increased attention has been given to stimulus-responsive and/or smart polymeric nanofibers owing to their ability to act as an ‘on–off’ reversible switch. Their structures are uniquely advantageous because their nanoscale features provide an extremely large surface area and high porosity, which increase the sensitivity to external stimuli, whereas their macroscopic features enable facile manipulation as a bulk matter. In addition, polymeric nanofibers can be manufactured at a low cost in large quantities. Indeed, polymeric nanofibers have already been utilized in the clinical field as wound dressings and antiadhesive membranes. Taken together, these advantages on both the nano- and macroscopic scales demonstrate that dynamically and reversibly tunable structures of smart nanofibers have the potential to be utilized for ‘on–off’ delivery of drugs or cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joseph HWB (1938) Order and life. In: Needham J, Sir Reader WD (eds) Philosophy 13:93–98. doi:10.1017/S0031819100014509 (Cambridge University Press, London, 1936 pp x + 178)

  2. Zheng W, Zhang W, Jiang X (2010) Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12:B451–B466. doi:10.1002/adem.200980087

    Article  Google Scholar 

  3. Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231. doi:10.1074/jbc.M110709200

  4. He W, Yong T, Teo WE, Ma Z, Ramakrishna S (2005) Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11:1574–1588. doi:10.1089/ten.2005.11.1574

    Article  Google Scholar 

  5. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841. doi:http://dx.doi.org/10.1016/S0142-9612(03)00374-0

  6. Pohunková H, Stehí J, Váchal J, čech O, Adam M (1996) Morphological features of bone healing under the effect of collagen-graft—glycosaminoglycan copolymer supplemented with the tripeptide Gly-His-Lys. Biomaterials 17:1567–1574. doi:http://dx.doi.org/10.1016/0142-9612(95)00310-X

  7. Nehrer S, Breinan HA, Ramappa A, Hsu HP, Minas T, Shortkroff S, Sledge CB, Yannas IV, Spector M (1998) Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19:2313–2328. doi:http://dx.doi.org/10.1016/S0142-9612(98)00143-4

  8. Hwang CM, Park Y, Park JY, Lee K, Sun K, Khademhosseini A, Lee SH (2009) Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed Microdevices 11:739–746. doi:10.1007/s10544-009-9287-7

    Article  Google Scholar 

  9. Zilberman M, Nelson KD, Eberhart RC (2005) Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J Biomed Mater Res B Appl Biomater 74B:792–799. doi:10.1002/jbm.b.30319

    Article  Google Scholar 

  10. Han D, Cheung KC (2011) Biodegradable cell-seeded nanofiber scaffolds for neural repair. Polymers 3:1684–1733. doi:10.3390/polym3041684

    Article  Google Scholar 

  11. Chew SY, Park TG (2009) Nanofibers in regenerative medicine and drug delivery. Adv Drug Del Rev 61:987. doi:http://dx.doi.org/10.1016/j.addr.2009.07.004

  12. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Del Rev 61:1007–1019. doi:http://dx.doi.org/10.1016/j.addr.2009.07.012

  13. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Del Rev 61:1020–1032. doi:http://dx.doi.org/10.1016/j.addr.2009.07.006

  14. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461. doi:http://dx.doi.org/10.1016/j.biomaterials.2005.08.004

  15. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  Google Scholar 

  16. Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 27:1165–1193. doi:http://dx.doi.org/10.1016/S0079-6700(02)00013-8

  17. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today 7:569–579. doi:http://dx.doi.org/10.1016/S1359-6446(02)02255-9

  18. Stayton PS, Shimoboji T, Long C, Chilkoti A, Ghen G, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474. doi:10.1038/378472a0

    Article  Google Scholar 

  19. Kwon IC, Bae YH, Kim SW (1991) Electrically credible polymer gel for controlled release of drugs. Nature 354:291–293. doi:10.1038/354291a0

    Article  Google Scholar 

  20. Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournès C, Wattiaux A, Stayton PS (2007) Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391. doi:10.1021/la062527g

    Article  Google Scholar 

  21. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347. doi:10.1038/346345a0

    Article  Google Scholar 

  22. Lage R, Diéguez C, Vidal-Puig A, López M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549. doi:http://dx.doi.org/10.1016/j.molmed.2008.09.007

  23. Kim Y-J, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and releases cells. Angew Chem Int Ed 51:10537–10541. doi:10.1002/anie.201204139

    Article  Google Scholar 

  24. Jin X, Hsieh YL (2005) pH-responsive swelling behavior of poly(vinyl alcohol)/poly(acrylic acid) bi-component fibrous hydrogel membranes. Polymer 46:5149–5160. doi:http://dx.doi.org/10.1016/j.polymer.2005.04.066

  25. Kato T (2002) Self-assembly of phase-segregated liquid crystal structures. Science 295:2414–2418. doi:10.1126/science.1070967-a

    Article  Google Scholar 

  26. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  Google Scholar 

  27. Aggeli A, Bell M, Carrick LM, Fishwick CWG, Harding R, Mawer PJ, Radford SE, Strong AE, Boden N (2003) pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases. J Am Chem Soc 125:9619–9628. doi:10.1021/ja021047i

    Article  Google Scholar 

  28. Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15:413–420. doi:http://dx.doi.org/10.1016/j.semcancer.2005.05.007

  29. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci 99:5133–5138. doi:10.1073/pnas.072699999

    Article  Google Scholar 

  30. Tambralli A, Blakeney B, Anderson J, Kushwaha M, Andukuri A, Dean D, Jun H-W (2009) A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 1:025001. doi:10.1088/1758-5082/1/2/025001

    Article  Google Scholar 

  31. Zang L, Che Y, Moore JS (2008) One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Acc Chem Res 41:1596–1608. doi:10.1021/ar800030w

    Article  Google Scholar 

  32. Yoshio M, Shoji Y, Tochigi Y, Nishikawa Y, Kato T (2009) Electric field-assisted alignment of self-assembled fibers composed of hydrogen-bonded molecules having laterally fluorinated mesogens. J Am Chem Soc 131:6763–6767. doi:10.1021/ja8093718

    Article  Google Scholar 

  33. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi:http://dx.doi.org/10.1016/j.biotechadv.2010.01.004

  34. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17:349–364. doi:10.1089/ten.teb.2011.0238

    Article  Google Scholar 

  35. Agarwal S, Greiner A, Wendorff JH (2009) Electrospinning of manmade and biopolymer nanofibers—progress in techniques, materials, and applications. Adv Funct Mater 19:2863–2879. doi:10.1002/adfm.200900591

    Article  Google Scholar 

  36. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi:http://dx.doi.org/10.1016/S0266-3538(03)00178-7

  37. Nain AS, Wong JC, Amon C, Sitti M (2006) Drawing suspended polymer micro-/nanofibers using glass micropipettes. Appl Phys Lett 89:183103–183105. doi:10.1063/1.2372694

    Article  Google Scholar 

  38. Nain AS, Phillippi JA, Sitti M, MacKrell J, Campbell PG, Amon C (2008) Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique. Small 4:1153–1159. doi:10.1002/smll.200800101

    Article  Google Scholar 

  39. Berry SM, Harfenist SA, Cohn RW, Keynton RS (2006) Characterization of micromanipulator-controlled dry spinning of micro- and sub-microscale polymer fibers. J Micromech Microeng 16:1825. doi:10.1088/0960-1317/16/9/010

  40. Berry SM, Warren SP, Hilgart DA, Schworer AT, Pabba S, Gobin AS, Cohn RW, Keynton RS (2011) Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers. Biomaterials 32:1872–1879. doi:http://dx.doi.org/10.1016/j.biomaterials.2010.11.023

  41. Harfenist SA, Cambron SD, Nelson EW, Berry SM, Isham AW, Crain MM, Walsh KM, Keynton RS, Cohn RW (2004) Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett 4:1931–1937. doi:10.1021/nl048919u

    Article  Google Scholar 

  42. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900. doi:http://dx.doi.org/10.1016/j.biomaterials.2003.08.062

  43. Mao J, Duan S, Song A, Cai Q, Deng X, Yang X (2012) Macroporous and nanofibrous poly(lactide-co-glycolide)(50/50) scaffolds via phase separation combined with particle-leaching. Mater Sci Eng C 32:1407–1414. doi:http://dx.doi.org/10.1016/j.msec.2012.04.018

  44. Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094–4103. doi:http://dx.doi.org/10.1016/j.biomaterials.2009.04.024

  45. Chen VJ, Ma PX (2004) Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065–2073. doi:http://dx.doi.org/10.1016/j.biomaterials.2003.08.058

  46. Li D, Krantz WB, Greenberg AR, Sani RL (2006) Membrane formation via thermally induced phase separation (TIPS): model development and validation. J Membr Sci 279:50–60. doi:http://dx.doi.org/10.1016/j.memsci.2005.11.036

  47. Hwang CM, Khademhosseini A, Park Y, Sun K, Lee S-H (2008) Microfluidic chip-based fabrication of plga microfiber scaffolds for tissue engineering. Langmuir 24:6845–6851. doi:10.1021/la800253b

    Article  Google Scholar 

  48. Lee KH, Shin SJ, Park Y, Lee SH (2009) Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small 5:1264–1268. doi:10.1002/smll.200801667

    Article  Google Scholar 

  49. Kiriya D, Kawano R, Onoe H, Takeuchi S (2012) Microfluidic control of the internal morphology in nanofiber-based macroscopic cables. Angew Chem Int Ed 51:7942–7947. doi:10.1002/anie.201202078

    Article  Google Scholar 

  50. Danilatos GD (1991) Review and outline of environmental SEM at present. J Microsc Oxford 162:391–402. doi:10.1111/j.1365-2818.1991.tb03149.x

    Article  Google Scholar 

  51. Wang H, Li Y, Sun L, Li Y, Wang W, Wang S, Xu S, Yang Q (2010) Electrospun novel bifunctional magnetic–photoluminescent nanofibers based on Fe2O3 nanoparticles and europium complex. J Colloid Interface Sci 350:396–401. doi:http://dx.doi.org/10.1016/j.jcis.2010.06.068

  52. Nygaard JV, Uyar T, Chen M, Cloetens P, Kingshott P, Besenbacher F (2011) Characterisation of internal morphologies in electrospun fibers by X-ray tomographic microscopy. Nanoscale 3:3594–3597. doi:10.1039/c1nr10304k

    Article  Google Scholar 

  53. Okuzaki H, Kobayashi K, Yan H (2009) Thermo-responsive nanofiber mats. Macromolecules 42:5916–5918. doi:10.1021/ma9014356

    Article  Google Scholar 

  54. Chen M, Gao S, Dong M, Song J, Yang C, Howard KA, Kjems J, Besenbacher F (2012) Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano 6:4835–4844. doi:10.1021/nn300106t

    Article  Google Scholar 

  55. Chen M, Nielsen SR, Uyar T, Zhang S, Zafar A, Dong M, Besenbacher F (2013) Electrospun UV-responsive supramolecular nanofibers from a cyclodextrin-azobenzene inclusion complex. J Mater Chem C 1:850–855. doi:10.1039/c2tc00180b

    Article  Google Scholar 

  56. Jena A, Gupta K (2002) Characterization of pore structure of filtration media. Fluid Part Separ J 14:227–241

    Google Scholar 

  57. Jena A, Gupta K (2002) A novel technique for pore structure characterization without the use of any toxic material. Nondestructive characterization of materials XI. Springer, Heidelberg

    Google Scholar 

  58. Jena A, Gupta K (2003) Liquid extrusion techniques for pore structure evaluation of nonwovens. Int Nonwovens J Fall 12:45–53

    Google Scholar 

  59. Rockwood DN, Chase DB, Akins Jr RE, Rabolt JF (2008) Characterization of electrospun poly(N-isopropyl acrylamide) fibers. Polymer 49:4025–4032. doi:http://dx.doi.org/10.1016/j.polymer.2008.06.018

  60. Okuzaki H, Kobayashi K, Yan H (2009) Non-woven fabric of poly(N-isopropylacrylamide) nanofibers fabricated by electrospinning. Synth Met 159:2273–2276. doi:http://dx.doi.org/10.1016/j.synthmet.2009.07.046

  61. Kim Y-J, Ebara M, Aoyagi T (2012) Temperature-responsive electrospun nanofibers for ‘on–off’ switchable release of dextran. Sci Technol Adv Mat 13:064203. doi:10.1088/1468-6996/13/6/064203

    Article  Google Scholar 

  62. Fu GD, Xu LQ, Yao F, Zhang K, Wang XF, Zhu MF, Nie SZ (2009) Smart nanofibers from combined living radical polymerization, “click chemistry”, and electrospinning. Acs Appl Mater Inter 1:239–243. doi:10.1021/am800143u

    Article  Google Scholar 

  63. Loh XJ, Peh P, Liao S, Sng C, Li J (2010) Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Controlled Release 143:175–182. doi:http://dx.doi.org/10.1016/j.jconrel.2009.12.030

  64. Webster M, Miao J, Lynch B, Green DS, Jones-Sawyer R, Linhardt RJ, Mendenhall J (2012) Tunable thermo-responsive poly(N-vinylcaprolactam) cellulose nanofibers: synthesis, characterization, and fabrication. Macromol Mater Eng:n/a-n/a. doi:10.1002/mame.201200081

    Google Scholar 

  65. Chen M, Dong M, Havelund R, Regina VR, Meyer RL, Besenbacher F, Kingshott P (2010) Thermo-responsive core-sheath electrospun nanofibers from poly (N-isopropylacrylamide)/polycaprolactone blends. Chem Mater 22:4214–4221. doi:10.1021/cm100753r

    Article  Google Scholar 

  66. DiBenedetto F, Mele E, Camposeo A, Athanassiou A, Cingolani R, Pisignano D (2008) Photoswitchable organic nanofibers. Adv Mater 20:314–318. doi:10.1002/adma.200700980

    Article  Google Scholar 

  67. De Sousa FB, Guerreiro JDT, Ma M, Anderson DG, Drum CL, Sinisterra RD, Langer R (2010) Photo-response behavior of electrospun nanofibers based on spiropyran-cyclodextrin modified polymer. J Mater Chem 20:9910–9917

    Article  Google Scholar 

  68. Chen M, Besenbacher F (2011) Light-driven wettability changes on a photoresponsive electrospun mat. ACS Nano 5:1549–1555. doi:10.1021/nn103577g

    Article  Google Scholar 

  69. Chae SK, Park H, Yoon J, Lee CH, Ahn DJ, Kim JM (2007) Polydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv Mater 19:521–524. doi:10.1002/adma.200602012

    Article  Google Scholar 

  70. Aguilar MR, Elvira C, Gallardo BS, Vazquez B, Roman JS (2007) Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis RL, Chiellini E (eds) Topics in tissue engineering. vol 3. pp 1–27

    Google Scholar 

  71. Gestos A, Whitten PG, Spinks GM, Wallace GG (2010) Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation. Soft Matter 6:1045–1052

    Article  Google Scholar 

  72. Wang L, Topham PD, Mykhaylyk OO, Howse JR, Bras W, Jones RAL, Ryan AJ (2007) Electrospinning pH-responsive block copolymer nanofibers. Adv Mater 19:3544–3548. doi:10.1002/adma.200700107

    Article  Google Scholar 

  73. Filipcsei G, Fehér J, Zrínyi M (2000) Electric field sensitive neutral polymer gels. J Mol Struct 554:109–117. doi:http://dx.doi.org/10.1016/S0022-2860(00)00564-0

  74. Li L, Hsieh YL (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly(acrylic acid)/poly(vinyl alcohol). Nanotechnology 16:2852. doi:10.1088/0957-4484/16/12/020

    Article  Google Scholar 

  75. Son YH, Lee JK, Soong Y, Martello D, Chyu M (2010) Enhanced magnetic response of fluids using self-assembled petal-like iron oxide particles. Appl Phys Lett 96:121903–121905. doi:10.1063/1.3371713

    Article  Google Scholar 

  76. Lin TC, Lin FH, Lin JC (2012) In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater 8:2704–2711. doi:http://dx.doi.org/10.1016/j.actbio.2012.03.045

  77. Huang C, Soenen SJ, Rejman J, Trekker J, Chengxun L, Lagae L, Ceelen W, Wilhelm C, Demeester J, De Smedt SC (2012) Magnetic electrospun fibers for cancer therapy. Adv Funct Mater 22:2479–2486. doi:10.1002/adfm.201102171

    Article  Google Scholar 

  78. Wang M, Singh H, Hatton TA, Rutledge GC (2004) Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45:5505–5514. doi:http://dx.doi.org/10.1016/j.polymer.2004.06.013

  79. Kriha O, Becker M, Lehmann M, Kriha D, Krieglstein J, Yosef M, Schlecht S, Wehrspohn RB, Wendorff JH, Greiner A (2007) Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers—a route to magnetic micromanipulators. Adv Mater 19:2483–2485. doi:10.1002/adma.200601937

    Article  Google Scholar 

  80. Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci. doi:10.1073/pnas.1104954108

    Google Scholar 

  81. Shibata H, Heo YJ, Okitsu T, Matsunaga Y, Kawanishi T, Takeuchi S (2010) Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc Natl Acad Sci. doi:10.1073/pnas.1006911107

    Google Scholar 

  82. Wang L, Li C, Ryan AJ, Armes SP (2006) Synthesis and peptide-induced degradation of biocompatible fibers based on highly branched poly(2-hydroxyethyl methacrylate). Adv Mater 18:1566–1570. doi:10.1002/adma.200600314

    Article  Google Scholar 

  83. Law B, Weissleder R, Tung C-H (2007) Protease-sensitive fluorescent nanofibers. Bioconjugate Chem 18:1701–1704. doi:10.1021/bc070054z

    Article  Google Scholar 

  84. Qi Q, Zhang T, Wang L (2008) Improved and excellent humidity sensitivities based on KCl-doped TiO[sub 2] electrospun nanofibers. Appl Phys Lett 93:023103–023105

    Article  Google Scholar 

  85. Li Z, Zhang H, Zheng W, Wang W, Huang H, Wang C, MacDiarmid AG, Wei Y (2008) Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc 130:5036–5037. doi:10.1021/ja800176s

    Article  Google Scholar 

  86. Wang X, Ding B, Yu J, Wang M, Pan F (2010) A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 21:055502. doi:10.1088/0957-4484/21/5/055502

    Article  Google Scholar 

  87. Wang X, Ding B, Yu J, Wang M (2011) Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J Mater Chem 21:16231–16238

    Article  Google Scholar 

  88. Yang D-J, Kamienchick I, Youn DY, Rothschild A, Kim I-D (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 20:4258–4264. doi:10.1002/adfm.201001251

    Article  Google Scholar 

  89. Shin J, Choi S-J, Lee I, Youn D-Y, Park CO, Lee J-H, Tuller HL, Kim I-D (2012) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater:n/a-n/a. doi:10.1002/adfm.201202729

    Google Scholar 

  90. Heo YJ, Takeuchi S (2013) Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv Healthcare Mater 2:43–56. doi:10.1002/adhm.201200167

    Article  Google Scholar 

  91. Zhang Y, Yarin AL (2009) Stimuli-responsive copolymers of n-isopropyl acrylamide with enhanced longevity in water for micro- and nanofluidics, drug delivery and non-woven applications. J Mater Chem 19:4732–4739

    Article  Google Scholar 

  92. Cui W, Qi M, Li X, Huang S, Zhou S, Weng J (2008) Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm 361:47–55. doi:http://dx.doi.org/10.1016/j.ijpharm.2008.05.005

  93. Yun J, Im JS, Lee Y-S, Kim H-I (2011) Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J 47:1893–1902. doi:http://dx.doi.org/10.1016/j.eurpolymj.2011.07.024

  94. Fu G-D, Xu L-Q, Yao F, Li G-L, Kang E-T (2009) Smart nanofibers with a photoresponsive surface for controlled release. Acs Appl Mater Inter 1:2424–2427. doi:10.1021/am900526u

    Article  Google Scholar 

  95. Kim Y-J, Ebara M, Aoyagi T (2013) A smart hyperthermia nanofiber with switchable drug release for improved skin cancer therapy. Adv Funct Mater 23:5753–5761. doi:10.1002/adfm.201300746

    Article  Google Scholar 

  96. Yoshida H, Klinkhammer K, Matsusaki M, Möller M, Klee D, Akashi M (2009) Disulfide-crosslinked electrospun poly(γ-glutamic acid) nonwovens as reduction-responsive scaffolds. Macromol Biosci 9:568–574. doi:10.1002/mabi.200800334

    Article  Google Scholar 

  97. Zou W, Huang Y, Luo J, Liu J, Zhao C (2010) Poly (methyl methacrylate–acrylic acid–vinyl pyrrolidone) terpolymer modified polyethersulfone hollow fiber membrane with pH sensitivity and protein antifouling property. J Membr Sci 358:76–84. doi:http://dx.doi.org/10.1016/j.memsci.2010.04.028

  98. Cheng C, Ma L, Wu D, Ren J, Zhao W, Xue J, Sun S, Zhao C (2011) Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes. J Membr Sci 378:369–381. doi:http://dx.doi.org/10.1016/j.memsci.2011.05.028

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jin Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Ebara, M. et al. (2014). Smart Nanofibers. In: Smart Biomaterials. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54400-5_5

Download citation

Publish with us

Policies and ethics