Skip to main content

Smart Nanoassemblies and Nanoparticles

  • Chapter
  • First Online:
Smart Biomaterials

Abstract

Nanoassemblies and nanoparticles have been developed with progress in nanotechnology and have been applied to a wide range of fields such as drug delivery, biosensing, and bioimaging. The emergence of living radical polymerization (LRP) and click chemistry, moreover, has led the simple synthesis of nanomaterials with complex functionalities. Today, we can easily design desirable nanostructures by the combination of these excellent preparation methods. The synthesis and characterization methods are discussed in this chapter. Special attention is paid to the recent advances of stimuli-responsive nanoassemblies and nanoparticles. Applications for targeted drug delivery, biosensing/bioimaging, and other fields are also discussed. The chapter ends with an overview of some of the future trends in applications in biotechnology and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotsuchibashi Y, Ebara M, Idota N, Narain R, Aoyagi T (2012) A ‘smart’ approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polym Chem-Uk 3:1150–1157

    Google Scholar 

  2. Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Controlled Release 132:153–163. doi:http://dx.doi.org/10.1016/j.jconrel.2008.08.012

  3. Nishiyama N, Kataoka K (2006) Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. In: Satchi-Fainaro R, Duncan R (eds) Polymer therapeutics II. Advances in polymer science, vol 193. Springer, Heidelberg, pp 67–101. doi:10.1007/12_025

  4. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci: Polym Symp 51:135–153. doi:10.1002/polc.5070510111

    Google Scholar 

  5. Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731. doi:10.1126/science.268.5218.1728

    Google Scholar 

  6. Davis FF (2002) The origin of pegnology. Adv Drug Del Rev 54:457–458. doi:http://dx.doi.org/10.1016/S0169-409X(02)00021-2

  7. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release 65:271–284. doi:http://dx.doi.org/10.1016/S0168-3659(99)00248-5

  8. Yokoyama M, Okano T, Sakurai Y, Kataoka K (1994) Improved synthesis of adriamycin-conjugated poly (ethylene oxide)-poly (aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Controlled Release 32:269–277. doi:http://dx.doi.org/10.1016/0168-3659(94)90237-2

  9. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, Okano T (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Controlled Release 50:79–92. doi:http://dx.doi.org/10.1016/S0168-3659(97)00115-6

  10. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299. doi:10.1021/ma00119a019

    Google Scholar 

  11. Katayose S, Kataoka K (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(l-lysine) block copolymer. Bioconjugate Chem 8:702–707. doi:10.1021/bc9701306

    Google Scholar 

  12. Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K (2008) PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc 130:6001–6009. doi:10.1021/ja800336v

    Google Scholar 

  13. Lee Y, Kataoka K (2009) Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 5:3810–3817

    Google Scholar 

  14. Kabanov AV, Chekhonin VP, Alakhov VY, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES, Kabanov VA (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles: micelles as microcontainers for drug targeting. FEBS Lett 258:343–345. doi:http://dx.doi.org/10.1016/0014-5793(89)81689-8

  15. Semsarilar M, Jones ER, Blanazs A, Armes SP (2012) Efficient synthesis of sterically-stabilized nano-objects via RAFT dispersion polymerization of benzyl methacrylate in alcoholic media. Adv Mater 24:3378–3382. doi:10.1002/adma.201200925

    Google Scholar 

  16. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK (1993) Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26:2987–2988. doi:10.1021/ma00063a054

    Google Scholar 

  17. Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28:1721–1723. doi:10.1021/ma00109a056

    Google Scholar 

  18. Wang J-S, Matyjaszewski K (1995) “Living”/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 28:7572–7573. doi:10.1021/ma00126a041

    Google Scholar 

  19. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562. doi:10.1021/ma9804951

    Google Scholar 

  20. Chong YK, Le TPT, Moad G, Rizzardo E, Thang SH (1999) A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules 32:2071–2074. doi:10.1021/ma981472p

    Google Scholar 

  21. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. doi:10.1002/1521-3773(20010601)40:11<2004:aid-anie2004>3.0.co;2-5

    Google Scholar 

  22. Sumerlin BS (2012) Proteins as initiators of controlled radical polymerization: grafting-from via ATRP and RAFT. ACS Macro Lett 1:141–145. doi:10.1021/mz200176g

    Google Scholar 

  23. Kabachii YA, Kochev SY, Bronstein LM, Blagodatskikh IB, Valetsky PM (2003) Atom transfer radical polymerization with Ti(III) halides and alkoxides. Polym Bull 50:271–278. doi:10.1007/s00289-003-0157-9

    Google Scholar 

  24. Onishi I, Baek K-Y, Kotani Y, Kamigaito M, Sawamoto M (2002) Iron-catalyzed living radical polymerization of acrylates: iodide-based initiating systems and block and random copolymerizations. J Polym Sci, Part A: Polym Chem 40:2033–2043. doi:10.1002/pola.10299

    Google Scholar 

  25. Wang B, Zhuang Y, Luo X, Xu S, Zhou X (2003) Controlled/“living” radical polymerization of MMA catalyzed by cobaltocene. Macromolecules 36:9684–9686. doi:10.1021/ma035334y

    Google Scholar 

  26. Granel C, Dubois P, Jérôme R, Teyssié P (1996) Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides. Macromolecules 29:8576–8582. doi:10.1021/ma9608380

    Google Scholar 

  27. Qiu J, Gaynor SG, Matyjaszewski K (1999) Emulsion polymerization of n-butyl methacrylate by reverse atom transfer radical polymerization. Macromolecules 32:2872–2875. doi:10.1021/ma981695f

    Google Scholar 

  28. Konkolewicz D, Magenau AJD, Averick SE, Simakova A, He H, Matyjaszewski K (2012) ICAR ATRP with ppm Cu catalyst in water. Macromolecules 45:4461–4468. doi:10.1021/ma300887r

    Google Scholar 

  29. Jakubowski W, Matyjaszewski K (2005) Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 38:4139–4146. doi:10.1021/ma047389l

    Google Scholar 

  30. Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A (2007) Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531. doi:10.1021/la063402e

    Google Scholar 

  31. Magenau AJD, Strandwitz NC, Gennaro A, Matyjaszewski K (2011) Electrochemically mediated atom transfer radical polymerization. Science 332:81–84. doi:10.1126/science.1202357

    Google Scholar 

  32. Benaglia M, Chiefari J, Chong YK, Moad G, Rizzardo E, Thang SH (2009) Universal (switchable) RAFT agents. J Am Chem Soc 131:6914–6915. doi:10.1021/ja901955n

    Google Scholar 

  33. Wei H, Schellinger JG, Chu DSH, Pun SH (2012) Neuron-targeted copolymers with sheddable shielding blocks synthesized using a reducible, RAFT-ATRP double-head agent. J Am Chem Soc 134:16554–16557. doi:10.1021/ja3085803

    Google Scholar 

  34. Averick S, Simakova A, Park S, Konkolewicz D, Magenau AJD, Mehl RA, Matyjaszewski K (2012) ATRP under biologically relevant conditions: grafting from a protein. ACS Macro Lett 1:6–10. doi:10.1021/mz200020c

    Google Scholar 

  35. Narain R, Gonzales M, Hoffman AS, Stayton PS, Krishnan KM (2007) Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Langmuir 23:6299–6304. doi:10.1021/la700268g

    Google Scholar 

  36. Convertine AJ, Ayres N, Scales CW, Lowe AB, McCormick CL (2004) Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules 5:1177–1180. doi:10.1021/bm049825h

    Google Scholar 

  37. Convertine AJ, Lokitz BS, Vasileva Y, Myrick LJ, Scales CW, Lowe AB, McCormick CL (2006) Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39:1724–1730. doi:10.1021/ma0523419

    Google Scholar 

  38. Li M, Li H, De P, Sumerlin BS (2011) Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization. Macromol Rapid Commun 32:354–359. doi:10.1002/marc.201000619

    Google Scholar 

  39. Crownover E, Duvall CL, Convertine A, Hoffman AS, Stayton PS (2011) RAFT-synthesized graft copolymers that enhance pH-dependent membrane destabilization and protein circulation times. J Controlled Release 155:167–174. doi:http://dx.doi.org/10.1016/j.jconrel.2011.06.013

  40. Mespouille L, Vachaudez M, Suriano F, Gerbaux P, Coulembier O, Degée P, Flammang R, Dubois P (2007) One-pot synthesis of well-defined amphiphilic and adaptative block copolymers via versatile combination of “click” chemistry and ATRP. Macromol Rapid Commun 28:2151–2158. doi:10.1002/marc.200700400

    Google Scholar 

  41. Chakrabarty R, Stang PJ (2012) Post-assembly functionalization of organoplatinum(II) metallacycles via copper-free click chemistry. J Am Chem Soc 134:14738–14741. doi:10.1021/ja3070073

    Google Scholar 

  42. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573. doi:10.1002/anie.200903924

    Google Scholar 

  43. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol-ene chemistry. J Polym Sci, Part A: Polym Chem 48:743–750. doi:10.1002/pola.23824

    Google Scholar 

  44. Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M (2006) Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Controlled Release 115:46–56. doi:http://dx.doi.org/10.1016/j.jconrel.2006.07.007

  45. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Controlled Release 62:115–127. doi:http://dx.doi.org/10.1016/S0168-3659(99)00029-2

  46. Virtanen J, Holappa S, Lemmetyinen H, Tenhu H (2002) Aggregation in aqueous poly(N-isopropylacrylamide)-block-poly(ethylene oxide) solutions studied by fluorescence spectroscopy and light scattering. Macromolecules 35:4763–4769. doi:10.1021/ma012239l

    Google Scholar 

  47. Motokawa R, Morishita K, Koizumi S, Nakahira T, Annaka M (2005) Thermosensitive diblock copolymer of poly(N-isopropylacrylamide) and poly(ethylene glycol) in water: polymer preparation and solution behavior. Macromolecules 38:5748–5760. doi:10.1021/ma047393x

    Google Scholar 

  48. Zhang W, Shi L, Wu K, An Y (2005) Thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in water. Macromolecules 38:5743–5747. doi:10.1021/ma0509199

    Google Scholar 

  49. Kotsuchibashi Y, Ebara M, Yamamoto K, Aoyagi T (2011) Tunable stimuli-responsive self-assembly system that forms and stabilizes nanoparticles by simple mixing and heating/cooling of selected block copolymers. Polym Chem-Uk 2:1362–1367

    Google Scholar 

  50. Kotsuchibashi Y, Ebara M, Yamamoto K, Aoyagi T (2010) “On–off” switching of dynamically controllable self-assembly formation of double-responsive block copolymers with tunable LCSTs. J Polym Sci, Part A: Polym Chem 48:4393–4399. doi:10.1002/pola.24226

    Google Scholar 

  51. Kotsuchibashi Y, Kuboshima Y, Yamamoto K, Aoyagi T (2008) Synthesis and characterization of double thermo-responsive block copolymer consisting N-isopropylacrylamide by atom transfer radical polymerization. J Polym Sci, Part A: Polym Chem 46:6142–6150. doi:10.1002/pola.22925

    Google Scholar 

  52. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33. doi:10.1016/s0001-8686(99)00023-8

    Google Scholar 

  53. Parasuraman D, Sarker AK, Serpe MJ (2012) Poly(N-isopropylacrylamide)-based microgels and their assemblies for organic-molecule removal from water. Chem Phys Chem 13:2507–2515. doi:10.1002/cphc.201200025

    Google Scholar 

  54. Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed 11:101–110. doi:10.1163/156856200743526

    Google Scholar 

  55. Ebara M, Aoyagi T, Sakai K, Okano T (2001) The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. J Polym Sci, Part A: Polym Chem 39:335–342. doi:10.1002/1099-0518(20010201)39:3<335:aid-pola1000>3.0.co;2-h

    Google Scholar 

  56. Maeda T, Kanda T, Yonekura Y, Yamamoto K, Aoyagi T (2006) Hydroxylated poly(N-isopropylacrylamide) as functional thermoresponsive materials. Biomacromolecules 7:545–549. doi:10.1021/bm050829b

    Google Scholar 

  57. Maeda T, Takenouchi M, Yamamoto K, Aoyagi T (2006) Analysis of the formation mechanism for thermoresponsive-type coacervate with functional copolymers consisting of N-isopropylacrylamide and 2-Hydroxyisopropylacrylamide. Biomacromolecules 7:2230–2236. doi:10.1021/bm060261m

    Google Scholar 

  58. Maeda T, Takenouchi M, Yamamoto K, Aoyagi T (2009) Coil-globule transition and/or coacervation of temperature and pH dual-responsive carboxylated poly(N-isopropylacrylamide). Polym J 41:181–188

    Google Scholar 

  59. Maeda T, Akasaki Y, Yamamoto K, Aoyagi T (2009) Stimuli-responsive coacervate induced in binary functionalized poly(N-isopropylacrylamide) aqueous system and novel method for preparing semi-IPN microgel using the coacervate. Langmuir 25:9510–9517. doi:10.1021/la9007735

    Google Scholar 

  60. Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220. doi:http://dx.doi.org/10.1006/jcis.1998.5985

  61. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi:http://dx.doi.org/10.1016/0021-9797(68)90272-5

  62. Lin Y-S, Abadeer N, Hurley KR, Haynes CL (2011) Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J Am Chem Soc 133:20444–20457. doi:10.1021/ja208567v

    Google Scholar 

  63. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Controlled Release 141:320–327. doi:http://dx.doi.org/10.1016/j.jconrel.2009.10.014

  64. Niu D, Ma Z, Li Y, Shi J (2010) Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J Am Chem Soc 132:15144–15147. doi:10.1021/ja1070653

    Google Scholar 

  65. Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J (2009) Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4:529–539. doi:10.1021/nn901398j

    Google Scholar 

  66. Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4:6001–6013. doi:10.1021/nn1015117

    Google Scholar 

  67. Ishii H, Sato K, Nagao D, Konno M (2012) Anionic liposome template synthesis of raspberry-like hollow silica particle under ambient conditions with basic catalyst. Colloids Surf B Biointerfaces 92:372–376. doi:http://dx.doi.org/10.1016/j.colsurfb.2011.11.005

  68. Zhang H, Li Z, Xu P, Wu R, Jiao Z (2010) A facile two-step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chem Commun 46:6783–6785

    Google Scholar 

  69. Teo BM, Suh SK, Hatton TA, Ashokkumar M, Grieser F (2011) Sonochemical synthesis of magnetic janus nanoparticles. Langmuir 27:30–33. doi:10.1021/la104284v

    Google Scholar 

  70. Astafieva I, Zhong XF, Eisenberg A (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352. doi:10.1021/ma00078a034

    Google Scholar 

  71. Masci G, Diociaiuti M, Crescenzi V (2008) ATRP synthesis and association properties of thermoresponsive anionic block copolymers. J Polym Sci, Part A: Polym Chem 46:4830–4842. doi:10.1002/pola.22816

    Google Scholar 

  72. S-i Yusa, Shimada Y, Mitsukami Y, Yamamoto T, Morishima Y (2004) Heat-induced association and dissociation behavior of amphiphilic diblock copolymers synthesized via reversible addition-fragmentation chain transfer radical polymerization. Macromolecules 37:7507–7513. doi:10.1021/ma0492519

    Google Scholar 

  73. Yip J, Duhamel J, Qiu XP, FoM Winnik (2011) Long-range polymer chain dynamics of pyrene-labeled poly(N-isopropylacrylamide)s studied by fluorescence. Macromolecules 44:5363–5372. doi:10.1021/ma2007865

    Google Scholar 

  74. Winnik FM (1990) Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST. Macromolecules 23:233–242. doi:10.1021/ma00203a040

    Google Scholar 

  75. Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686. doi:10.1021/ma00007a034

    Google Scholar 

  76. Duan Q, Miura Y, Narumi A, Shen X, Sato S-I, Satoh T, Kakuchi T (2006) Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. J Polym Sci, Part A: Polym Chem 44:1117–1124. doi:10.1002/pola.21208

    Google Scholar 

  77. Yip J, Duhamel J, Qiu XP, Winnik FM (2011) Fluorescence studies of a series of monodisperse telechelic α,ω-dipyrenyl poly(N-isopropylacrylamide)s in ethanol and in water. Can J Chem 89:163–172. doi:10.1139/v10-117

    Google Scholar 

  78. Scales CW, Convertine AJ, McCormick CL (2006) Fluorescent labeling of RAFT-generated poly(N-isopropylacrylamide) via a facile maleimide-thiol coupling reaction. Biomacromolecules 7:1389–1392. doi:10.1021/bm060192b

    Google Scholar 

  79. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S (2012) Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 3:705. doi:http://www.nature.com/ncomms/journal/v3/n2/suppinfo/ncomms1714_S1.html

  80. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562–4589. doi:10.1002/anie.200503873

    Google Scholar 

  81. Li C, Liu S (2012) Polymeric assemblies and nanoparticles with stimuli-responsive fluorescence emission characteristics. Chem Commun 48:3262–3278

    Google Scholar 

  82. Aoshima S, Oda H, Kobayashi E (1992) Synthesis of thermally-induced phase separating polymer with well-defined polymer structure by living cationic polymerization. I. Synthesis of poly(vinyl ether)s with oxyethylene units in the pendant and its phase separation behavior in aqueous solution. J Polym Sci, Part A: Polym Chem 30:2407–2413. doi:10.1002/pola.1992.080301115

    Google Scholar 

  83. Aoshima S, Sugihara S (2000) Syntheses of stimuli-responsive block copolymers of vinyl ethers with side oxyethylene groups by living cationic polymerization and their thermosensitive physical gelation. J Polym Sci, Part A: Polym Chem 38:3962–3965. doi:10.1002/1099-0518(20001101)38:21<3962:aid-pola130>3.0.co;2-9

    Google Scholar 

  84. Seno K-I, Kanaoka S, Aoshima S (2008) Thermosensitive diblock copolymers with designed molecular weight distribution: synthesis by continuous living cationic polymerization and micellization behavior. J Polym Sci, Part A: Polym Chem 46:2212–2221. doi:10.1002/pola.22556

    Google Scholar 

  85. Skrabania K, Kristen J, Laschewsky A, Akdemir Ö, Hoth A, Lutz J-F (2006) Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers. Langmuir 23:84–93. doi:10.1021/la061509w

    Google Scholar 

  86. Kotsuchibashi Y, Yamamoto K, Aoyagi T (2009) Assembly behavior of double thermo-responsive block copolymers with controlled response temperature in aqueous solution. J Colloid Interface Sci 336:67–72. doi:http://dx.doi.org/10.1016/j.jcis.2009.03.093

  87. Lutz J-F, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-Methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896. doi:10.1021/ma0517042

    Google Scholar 

  88. Lutz J-F, Akdemir Ö, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128:13046–13047. doi:10.1021/ja065324n

    Google Scholar 

  89. Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS (2012) Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials 33:2301–2309. doi:http://dx.doi.org/10.1016/j.biomaterials.2011.11.019

  90. Zhang W, Shi L, Ma R, An Y, Xu Y, Wu K (2005) Micellization of thermo- and pH-responsive triblock copolymer of Poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules 38:8850–8852. doi:10.1021/ma050998o

    Google Scholar 

  91. Xu J, Luo S, Shi W, Liu S (2005) Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 22:989–997. doi:10.1021/la0522707

    Google Scholar 

  92. Liu H, Li C, Liu H, Liu S (2009) pH-responsive supramolecular self-assembly of well-defined zwitterionic ABC miktoarm star terpolymers. Langmuir 25:4724–4734. doi:10.1021/la803813r

    Google Scholar 

  93. Ye X, Fei J, Xu K, Bai R (2010) Effect of polystyrene-b-poly(ethylene oxide) on self-assembly of polystyrene-b-poly(N-isopropylacrylamide) in aqueous solution. J Polym Sci, Part B: Polym Phys 48:1168–1174. doi:10.1002/polb.22006

    Google Scholar 

  94. Kim SH, Tan JPK, Nederberg F, Fukushima K, Yang YY, Waymouth RM, Hedrick JL (2009) Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers. Macromolecules 42:25–29. doi:10.1021/ma801739x

    Google Scholar 

  95. Santis SD, Ladogana RD, Diociaiuti M, Masci G (2010) Pegylated and thermosensitive polyion complex micelles by self-assembly of two oppositely and permanently charged diblock copolymers. Macromolecules 43:1992–2001. doi:10.1021/ma9026542

    Google Scholar 

  96. Palyulin VV, Potemkin II (2008) Mixed versus ordinary micelles in the dilute solution of AB and BC diblock copolymers. Macromolecules 41:4459–4463. doi:10.1021/ma8003949

    Google Scholar 

  97. Narain R, Armes SP (2003) Direct synthesis and aqueous solution properties of well-defined cyclic sugar methacrylate polymers. Macromolecules 36:4675–4678. doi:10.1021/ma034321h

    Google Scholar 

  98. Ahmed M, Narain R (2013) Progress of RAFT based polymers in gene delivery. Prog Polym Sci. doi:http://dx.doi.org/10.1016/j.progpolymsci.2012.09.008

  99. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink W (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589. doi:10.1007/s11095-010-0233-4

    Google Scholar 

  100. Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Del Rev 61:768–784. doi:http://dx.doi.org/10.1016/j.addr.2009.04.016

  101. Bae Y, Jang W-D, Nishiyama N, Fukushima S, Kataoka K (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Bio Syst 1:242–250

    Google Scholar 

  102. Ahmed M, Narain R (2011) Cationic glycopolymers: engineered carbohydrate-based materials for biomedical applications. Wiley, New York, pp 143–165. doi:10.1002/9780470944349.ch3

  103. Ahmed M, Narain R (2011) Glycopolymer bioconjugates: engineered carbohydrate-based materials for biomedical applications. Wiley, New York, pp 167–188. doi:10.1002/9780470944349.ch4

  104. Ahmed M, Narain R (2011) The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems. Biomaterials 32:5279–5290. doi:http://dx.doi.org/10.1016/j.biomaterials.2011.03.082

  105. Ahmed M, Narain R (2012) The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems. Biomaterials 33:3990–4001. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.02.015

  106. Maruyama A, Ishihara T, Kim J-S, Kim SW, Akaike T (1997) Nanoparticle DNA carrier with poly(l-lysine) grafted polysaccharide copolymer and poly(d,l-lactic acid). Bioconjugate Chem 8:735–742. doi:10.1021/bc9701048

    Google Scholar 

  107. Hasegawa U, Nomura S-iM, Kaul SC, Hirano T, Akiyoshi K (2005) Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–921. doi:http://dx.doi.org/10.1016/j.bbrc.2005.03.228

  108. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327. doi:10.1021/ar00056a001

    Google Scholar 

  109. Mao Z, Wan L, Hu L, Ma L, Gao C (2010) Tat peptide mediated cellular uptake of SiO2 submicron particles. Colloids Surf B Biointerfaces 75:432–440. doi:http://dx.doi.org/10.1016/j.colsurfb.2009.09.017

  110. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701. doi:10.1021/ja0296935

    Google Scholar 

  111. Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Controlled Release 118:216–224. doi:http://dx.doi.org/10.1016/j.jconrel.2006.12.008

  112. Chavanpatil MD, Khdair A, Panyam J (2006) Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 6:2651–2663. doi:10.1166/jnn.2006.443

    Google Scholar 

  113. Ku S, Yan F, Wang Y, Sun Y, Yang N, Ye L (2010) The blood–brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem Biophys Res Commun 394:871–876. doi:http://dx.doi.org/10.1016/j.bbrc.2010.03.006

  114. Lee JCH, McDonald R, Hall DG (2011) Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat Chem 3:894–899. doi:http://www.nature.com/nchem/journal/v3/n11/abs/nchem.1150.html#supplementary-information

  115. Rauniyar V, Zhai H, Hall DG (2008) Catalytic enantioselective allyl- and crotylboration of aldehydes using chiral diol•SnCl4 complexes. Optimization, substrate scope and mechanistic investigations. J Am Chem Soc 130:8481–8490. doi:10.1021/ja8016076

    Google Scholar 

  116. Cambre JN, Sumerlin BS (2011) Biomedical applications of boronic acid polymers. Polymer 52:4631–4643. doi:http://dx.doi.org/10.1016/j.polymer.2011.07.057

  117. Böeseken J (1949) The use of boric acid for the determination of the configuration of carbohydrates. In: Pigm WW, Wolfro ML (eds) Advances in carbohydrate chemistry, vol 4. Academic Press, New York, pp 189–210. doi:http://dx.doi.org/10.1016/S0096-5332(08)60049-1

  118. Matsumoto A, Yamamoto K, Yoshida R, Kataoka K, Aoyagi T, Miyahara Y (2010) A totally synthetic glucose responsive gel operating in physiological aqueous conditions. Chem Commun 46:2203–2205

    Google Scholar 

  119. Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695. doi:10.1021/ja982975d

    Google Scholar 

  120. Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4:1410–1416. doi:10.1021/bm034139o

    Google Scholar 

  121. Qin Y, Cheng G, Sundararaman A, Jäkle F (2002) Well-defined boron-containing polymeric lewis acids. J Am Chem Soc 124:12672–12673. doi:10.1021/ja020773i

    Google Scholar 

  122. Roy D, Cambre JN, Sumerlin BS (2009) Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration. Chem Commun 0:2106–2108

    Google Scholar 

  123. Bérubé M, Dowlut M, Hall DG (2008) Benzoboroxoles as efficient glycopyranoside-binding agents in physiological conditions: structure and selectivity of complex formation. J Org Chem 73:6471–6479. doi:10.1021/jo800788s

    Google Scholar 

  124. Shiino D, Murata Y, Kubo A, Kim YJ, Kataoka K, Koyama Y, Kikuchi A, Yokoyama M, Sakurai Y, Okano T (1995) Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J Controlled Release 37:269–276. doi:http://dx.doi.org/10.1016/0168-3659(95)00084-4

  125. Hall DG (2011) Boronic acids-preparation, applications in organic synthesis, medicine, and materials, 2nd edn. Wiley-VCH, Weinheim, p 701. ISBN 9783527325986

    Google Scholar 

  126. Mahalingam A, Geonnotti AR, Balzarini J, Kiser PF (2011) Activity and safety of synthetic lectins based on benzoboroxole-functionalized polymers for inhibition of HIV entry. Mol Pharm 8:2465–2475. doi:10.1021/mp2002957

    Google Scholar 

  127. Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, Ping Q (2012) Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 24:3659–3665. doi:10.1002/adma.201201498

    Google Scholar 

  128. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607. doi:http://www.nature.com/nrd/journal/v7/n7/suppinfo/nrd2290_S1.html

  129. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Google Scholar 

  130. Feng W, Wee Beng T, Yong Z, Xianping F, Minquan W (2006) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1

    Google Scholar 

  131. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Google Scholar 

  132. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi:10.1021/nl048715d

    Google Scholar 

  133. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29. doi:http://dx.doi.org/10.1016/S1748-0132(07)70016-6

  134. Pinho SLC, Pereira GA, Voisin P, Kassem J, Bouchaud V, Etienne L, Peters JA, Carlos L, Mornet S, Geraldes CFGC, Rocha J, Delville M-H (2010) Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 4:5339–5349. doi:10.1021/nn101129r

    Google Scholar 

  135. Giovanetti LJ, Ramallo-López JM, Foxe M, Jones LC, Koebel MM, Somorjai GA, Craievich AF, Salmeron MB, Requejo FG (2012) Shape changes of Pt nanoparticles induced by deposition on mesoporous silica. Small 8:468–473. doi:10.1002/smll.201101293

    Google Scholar 

  136. Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853. doi:10.1002/smll.200800461

    Google Scholar 

  137. Owens III DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. doi:http://dx.doi.org/10.1016/j.ijpharm.2005.10.010

  138. Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20:8693–8699

    Google Scholar 

  139. Bardi G, Malvindi MA, Gherardini L, Costa M, Pompa PP, Cingolani R, Pizzorusso T (2010) The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 31:6555–6566. doi:http://dx.doi.org/10.1016/j.biomaterials.2010.04.063

  140. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2004) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5:113–117. doi:10.1021/nl0482478

    Google Scholar 

  141. Kotsuchibashi Y, Zhang Y, Ahmed M, Ebara M, Aoyagi T, Narain R (2013) Fabrication of FITC-doped silica nanoparticles and study of their cellular uptake in the presence of lectins. J Biomed Mater Res Part A. doi:10.1002/jbm.a.34498

    Google Scholar 

  142. Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R (2012) Fabrication of doubly responsive polymer functionalized silica nanoparticles via a simple thiol-ene click chemistry. Polym Chem-Uk 3:2545–2550

    Google Scholar 

  143. Wakamatsu H, Yamamoto K, Nakao A, Aoyagi T (2006) Preparation and characterization of temperature-responsive magnetite nanoparticles conjugated with N-isopropylacrylamide-based functional copolymer. J Magn Magn Mater 302:327–333. doi:http://dx.doi.org/10.1016/j.jmmm.2005.09.032

  144. Yamamoto K, Matsukuma D, Nanasetani K, Aoyagi T (2008) Effective surface modification by stimuli-responsive polymers onto the magnetite nanoparticles by layer-by-layer method. Appl Surf Sci 255:384–387. doi:10.1016/j.apsusc.2008.06.065

    Google Scholar 

  145. Thomas CR, Ferris DP, Lee J-H, Choi E, Cho MH, Kim ES, Stoddart JF, Shin J-S, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625. doi:10.1021/ja1022267

    Google Scholar 

  146. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. doi:10.1021/ie50320a024

    Google Scholar 

  147. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Google Scholar 

  148. Miyauchi Y, Ding B, Shiratori S (2006) Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning. Nanotechnology 17:5151

    Google Scholar 

  149. Zhang T, Li M, Su B, Ye C, Li K, Shen W, Chen L, Xue Z, Wang S, Jiang L (2011) Bio-inspired anisotropic micro/nano-surface from a natural stamp: grasshopper wings. Soft Matter 7:7973–7975

    Google Scholar 

  150. Karunakaran RG, Lu C-H, Zhang Z, Yang S (2011) Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Langmuir 27:4594–4602. doi:10.1021/la104067c

    Google Scholar 

  151. Kotsuchibashi Y, Faghihnejad A, Zeng H, Narain R (2013) Construction of ‘smart’ surfaces with polymer functionalized silica nanoparticles. Polym Chem-Uk 4:1038–1047

    Google Scholar 

  152. Stratakis E, Mateescu A, Barberoglou M, Vamvakaki M, Fotakis C, Anastasiadis SH (2010) From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces. Chem Commun 46:4136–4138

    Google Scholar 

  153. Haba Y, Kojima C, Harada A, Kono K (2007) Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups. Angew Chem Int Ed 46:234–237. doi:10.1002/anie.200603346

    Google Scholar 

  154. Kuboshima Y, Yamamoto K, Aoyagi T (2008) Preparation and characterization of nano-sized complexes consisting of stimuli-responsive block copolymers and PAMAM dendrimers. Trans Mater Res Soc Jpn 33:149–152

    Google Scholar 

  155. Akin M, Bongartz R, Walter JG, Demirkol DO, Stahl F, Timur S, Scheper T (2012) PAMAM-functionalized water soluble quantum dots for cancer cell targeting. J Mater Chem 22:11529–11536

    Google Scholar 

  156. Min K, Gao H (2012) New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion. J Am Chem Soc 134:15680–15683. doi:10.1021/ja307174h

    Google Scholar 

  157. Kotsuchibashi Y, Agustin RVC, Lu J-Y, Hall DG, Narain R (2013) Temperature, pH, and glucose responsive gels via simple mixing of boroxole- and glyco-based polymers. ACS Macro Lett 2:260–264. doi:10.1021/mz400076p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Kotsuchibashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Ebara, M. et al. (2014). Smart Nanoassemblies and Nanoparticles. In: Smart Biomaterials. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54400-5_3

Download citation

Publish with us

Policies and ethics