Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2789 Accesses

Abstract

For an open cover \(\mathcal{U}\) of a space X, \(\mathrm{ord}\,\mathcal{U} =\sup \{ \mathrm{card}\,\mathcal{U}[x]\mid x \in X\}\) is called the order of \(\mathcal{U}\). Note that \(\mathrm{ord}\,\mathcal{U} =\dim N(\mathcal{U}) + 1\), where \(N(\mathcal{U})\) is the nerve of \(\mathcal{U}\). The (covering) dimension of X is defined as follows: dimXn if each finite open cover of X has a finite open refinement \(\mathcal{U}\) with \(\mathrm{ord}\,\mathcal{U}\leq n + 1\). and then, dimX = n if dimXn and dimXn. By \(\dim X = -1\), we mean that X = . We say that X is \(\boldsymbol{n}\)-dimensional if dimX = n and that X is finite-dimensional (f.d.) (dimX < ) if dimXn for some nω. Otherwise, X is said to be infinite-dimensional (i.d.) (dimX = ). The dimension is a topological invariant (i.e., dimX = dimY if XY ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a map r is called a retraction, which will be discussed in Chap. 6.

  2. 2.

    In this chapter, spaces are assumed normal, but the small inductive dimension also makes sense for regular spaces.

  3. 3.

    In many articles, the infinite dimensionality is not assumed, i.e., w.i.d. = not s.i.d., so f.d. implies w.i.d. However, here we assume the infinite dimensionality because we discuss the difference among infinite-dimensional spaces.

  4. 4.

    It is known that \(\ell_{1} \approx \ell_{2} \approx {\mathbb{R}}^{\mathbb{N}}\), where the latter homeomorphy was proved by R.D. Anderson.

  5. 5.

    Since \(\mathrm{rint}\,\boldsymbol{Q}\) and \({\mathbf{I}}^{\mathbb{N}} \setminus {(0, 1)}^{\mathbb{N}}\) are not completely metrizable, they are not homeomorphic to \({\mathbb{R}}^{\mathbb{N}}\), but it is known that \(\mathrm{rint}\,\boldsymbol{Q} \approx {\mathbf{I}}^{\mathbb{N}} \setminus {(0, 1)}^{\mathbb{N}}\).

  6. 6.

    Refer to Engelking’s book “Theory of Dimensions, Finite and Infinite,” Problem 6.1.E.

  7. 7.

    When Y is paracompact, \(\{\mathcal{V}(f)\mid \mathcal{V}\in \mathrm{cov\,(Y )}\}\) is a neighborhood basis of each f ∈ C(X, Y ) and the topology is Hausdorff.

  8. 8.

    In this case, a proper map coincides with a perfect map (Proposition 2.1.5).

  9. 9.

    Usually, the phrase “the class of” is omitted.

  10. 10.

    Recall that \(\nu^0\) denotes the space \(\mathbb{R} \setminus \mathbb{Q}\). Then, \(\nu_0 \subsetneqq \nu^0\) but \(\nu _{0} \approx ((-1, 1) \setminus \mathbb{Q})^{\mathbb{N}} \approx \nu ^{0}\).

  11. 11.

    This is different from the usual notation. In the literature for Dimension Theory, this space is represented by \(K_{\omega}(\aleph_0)\) and \(K_{\omega }\) stands for \(\mathbf{I}_{f}^{\mathbb{N}}\).

  12. 12.

    Recall \({U}^{-} =\{ A \subset Y \mid A \cap U\not =\emptyset \}\) and \({U}^{+} =\{ A \subset Y \mid A \subset U\}\).

  13. 13.

    In a metric space X = (X, d), A ⊂ X is said to be \(\boldsymbol{\varepsilon }\)-dense if \(d(x,A) <\varepsilon\) for each x ∈ X.

  14. 14.

    Refer to the last Remark of Sect. 2.2.

  15. 15.

    Recall that a continuum is a compact connected metrizable space.

  16. 16.

    In general, each link U i is not assumed to be connected and open.

  17. 17.

    This condition is stronger than usual, and is adopted to simplify our argument. Usually, it is said that \((U_{1},\ldots ,U_{n})\) is a simple chain if \(U_{i} \cap U_{j}\not =\emptyset \Leftrightarrow \vert i - j\vert \leq 1\). However, in our definition, \(U_{i} \cap U_{j}\not =\emptyset \Leftrightarrow \mathrm{cl}\,U_{i} \cap \mathrm{cl}\,U_{j}\not =\emptyset \Leftrightarrow \vert i - j\vert \leq 1\).

  18. 18.

    Recall that an arc is an injective path, i.e., an embedding of I.

References

  1. P. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen. Math. Ann. 106, 161–238 (1932)

    MathSciNet  MATH  Google Scholar 

  2. P. Alexandroff, On the dimension of normal spaces. Proc. Roy. Soc. Lond. 189, 11–39 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Alexandroff, Preface to the Russian translation (Russian). Russian translation of W. Hurewicz, H. Wallman, Dimension Theory, Izdat. Inostr. Literatura, Moscow (1948)

    Google Scholar 

  4. R.D. Anderson, A characterization of the universal curve and a proof of its homogeneity. Ann. Math. 67, 313–324 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bestvina, Characterizing k-dimensional universal Menger compacta. Mem. Am. Math. Soc. 71(380) (1988)

    Google Scholar 

  6. H.G. Bothe, Eine Einbettung m-dimensionaler Mengen in einen (m + 1)-dimensionalen absoluten Retrakt. Fund. Math. 52, 209–224 (1963)

    MathSciNet  MATH  Google Scholar 

  7. N. Bourbaki, Topologie Générale, 2nd edition. (Hermann, Paris, 1958)

    MATH  Google Scholar 

  8. L.E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)

    Google Scholar 

  9. L.E.J. Brouwer, Über den natürlichen Dimensionsbegriff. J. für die reine und angrew Math. 142, 146–152 (1913)

    MathSciNet  MATH  Google Scholar 

  10. E. Čech, Sur la théorie de la dimension. C.R. Acad. Paris 193, 976–977 (1931)

    Google Scholar 

  11. E. Čech, Přispěvek k theorii dimense, (Contribution to dimension theory). Časopis Pěst. Mat. Fys. 62, 277–291 (1933); French translation in Topological Papers, Prague (1968), pp. 129–142

    Google Scholar 

  12. C.H. Dowker, Mapping theorems for non-compact spaces. Am. J. Math. 69, 200–242 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.H. Dowker, Local dimension of normal spaces. Q. J. Math. Oxf. 6, 101–120 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Eilenberg, E. Otto, Quelques propiétés caractéristique de la dimension. Fund. Math. 31, 149–153 (1938)

    MATH  Google Scholar 

  15. R. Engelking, R. Pol, Compactifications of countable-dimensional and strongly countable-dimensional spaces. Proc. Am. Math. Soc. 104, 985–987 (1988)

    MathSciNet  MATH  Google Scholar 

  16. P. Erdös, The dimension of the rational points in Hilbert space. Ann. Math. 41, 734–736 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen. Compositio Math. 4, 145–234 (1937)

    MathSciNet  MATH  Google Scholar 

  18. H. Hahn, Mengentheoretische Charakterisierung der stetigen Kurve. Sitzungsberichte Akad. Wiss. Wien Abt. IIa 123, 2433–2489 (1914)

    Google Scholar 

  19. F. Hausdorff, Grundzüge der Mengenlehre (Teubner, Leipzig, 1914)

    MATH  Google Scholar 

  20. E. Hemmingsen, Some theorems in dimension theory for normal Hausdorff spaces. Duke Math. J. 13, 495–504 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  21. D.W. Henderson, An infinite-dimensional compactum with no positive-dimensional compact subsets – a simpler construction. Am. J. Math. 89, 105–121 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Holszyński, Une généralisation de théorème de Brouwer sur les points invariant. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. et Phys. 12, 603–606 (1964)

    Google Scholar 

  23. W. Hurewicz, Über Abbildungen topologischer Räume auf die n-dimensionale Sphäre. Fund. Math. 24, 144–150 (1935)

    MATH  Google Scholar 

  24. M. Katětov, On the dimension of non-separable spaces, I (Russian). Czech. Math. J. 2, 333–368 (1952)

    MATH  Google Scholar 

  25. B. Knaster, K. Kuratowski, Sur les ensembles connexes. Fund. Math. 2, 206–255 (1921)

    MATH  Google Scholar 

  26. B. Knaster, K. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)

    MATH  Google Scholar 

  27. J. Kulesza, An example in the dimension theory of metrizable spaces. Topology Appl. 35, 109–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à n et n + p dimensions. Math. Ann. 70, 166–168 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Lefschetz, On compact spaces. Ann. Math. 32, 521–538 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Lelek, On the dimensionality of remainders in compactifications (Russian). Dokl. Akad. Nauk SSSR 160, 534–537 (1965); English translation in Sov. Math. Dokl. 6, 136–140 (1965)

    Google Scholar 

  31. M. Levin, A remark on Kulesza’s example. Proc. Am. Math. Soc. 128, 623–624 (2000)

    Article  MATH  Google Scholar 

  32. B.T. Levšenko, On strongly infinite-dimensional spaces (Russian). Vestnik Moskov. Univ., Ser. Mat. 219–228 (1959)

    Google Scholar 

  33. S. Mardešić, On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4, 278–291 (1960)

    MathSciNet  MATH  Google Scholar 

  34. S. Mazurkiewicz, O arytmetyzacji contnuów. C.R. Varsovie 6, 305–311 (1913); O arytmetyzacji contnuów, II. C.R. Varsovie 6, 941–945 (1913); French translation Travaux de topologie, Warszawa, pp. 37–41, 42–45 (1969)

    Google Scholar 

  35. S. Mazurkiewicz, Sur les lignes de Jordan. Fund. Math. 1, 166–209 (1920)

    MATH  Google Scholar 

  36. S. Mazurkiewicz, Sur les problème κ et λ de Urysohn. Fund. Math. 10, 311–319 (1927)

    Google Scholar 

  37. K. Menger, Über die Dimensionalität von Punktmengen I. Monatsh. für Math. und Phys. 33, 148–160 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Menger, Allgemeine Räume und Cartesische Räume, Zweite Mitteilung: “Über umfassendste n-dimensionale Mengen”. Proc. Akad. Amterdam 29, 1125–1128 (1926)

    MATH  Google Scholar 

  39. K. Morita, On the dimension of normal spaces, II. J. Math. Soc. Jpn. 2, 16–33 (1950)

    Article  MathSciNet  Google Scholar 

  40. K. Nagami, Finite-to-one closed mappings and dimension, II. Proc. Jpn. Acad. 35, 437–439 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Nagórko, Characterization and topological rigidity of Nöbeling manifolds. Ph.D. Thesis, University of Warsaw (2006)

    Google Scholar 

  42. G. Nöbeling, Über eine n-dimensionale Universalmenge in R 2n + 1. Math. Ann. 104, 71–80 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Peano, Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36, 157–160 (1890)

    Article  MathSciNet  Google Scholar 

  44. H. Poincaré, Pourquoi l’espace a trois dimensions. Revue de Metaph. et de Morale 20, 483–504 (1912)

    MATH  Google Scholar 

  45. R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional. Proc. Am. Math. Soc. 82, 634–636 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Pol, Countable-dimensional universal sets. Trans. Am. Math. Soc. 297, 255–268 (1986)

    MathSciNet  MATH  Google Scholar 

  47. P. Roy, Failure of equivalence of dimension concepts for metric spaces. Bull. Am. Math. Soc. 68, 609–613 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Roy, Nonequality of dimensions for metric spaces. Trans. Am. Math. Soc. 134, 117–132 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Rubin, R.M. Schori, J.J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples. Gen. Topology Appl. 10, 93–102 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Sierpiński, Sur les ensembles connexes et non connexes. Fund. Math. 2, 81–95 (1921)

    MATH  Google Scholar 

  51. E.G. Skljarenko, On dimensional properties of infinite-dimensional spaces (Russian). Isv. Akad. Nauk. SSSR Ser. Mat. 23, 197–212 (1959); English translation in Am. Math. Soc. Transl. Ser. 2 21, 35–50 (1962)

    Google Scholar 

  52. Ju.M. Smirnov, Some relations in the theory of dimensions (Russian). Mat. Sb. 29, 151–172 (1951)

    Google Scholar 

  53. E. Sperner, Neuer Beweis für die Invarianz des Dimensionszahl und des Gebietes. Abh. Math. Semin. Hamburg Univ. 6, 265–272 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  54. P. Urysohn, Kes multiplicités Cantoriennes. C.R. Acad. Paris 175, 440–442 (1922)

    Google Scholar 

  55. P. Vopěnka, Remark on the dimension of metric spaces (Russian). Czech. Math. J. 9, 519–521 (1959)

    MATH  Google Scholar 

  56. J.J. Walsh, Infinite-dimensional compacta containing no n-dimensional (n ≥ 1) subsets. Topology 18, 91–95 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Sakai, K. (2013). Dimensions of Spaces. In: Geometric Aspects of General Topology. Springer Monographs in Mathematics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54397-8_5

Download citation

Publish with us

Policies and ethics