Metrization and Paracompact Spaces

  • Katsuro Sakai
Part of the Springer Monographs in Mathematics book series (SMM)


In this chapter, we are mainly concerned with metrization and paracompact spaces. We also derive some properties of the products of compact spaces and perfect maps. Several metrization theorems are proved, and we characterize completely metrizable spaces. We will study several different characteristics of paracompact spaces that indicate, in many situations, the advantages of paracompactness. In particular, there exists a useful theorem showing that, if a paracompact space has a certain property locally, then it has the same property globally. Furthermore, paracompact spaces have partitions of unity, which is also a very useful property.


Open Cover Direct Limit Metrizable Space Limitation Topology Bibliographic Note 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Alexandroff, P. Urysohn, Une condition nécessaire et suffisante pour qu’une classe (L) soit une classe (B). C.R. Acad. Sci. Paris Sér. A-B 177, 1274–1276 (1923)Google Scholar
  2. 2.
    R.H. Bing, Metrization of topological spaces. Can. J. Math. 3, 175–186 (1951)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    E. Čech, On bicompact spaces. Ann. Math. 38, 823–844 (1937)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Dieudonné, Une généralisation des espaces compacts. J. Math. Pures Appl. 23, 65–76 (1944)MathSciNetMATHGoogle Scholar
  5. 5.
    A.H. Frink, Distance functions and the metrization problems. Bull. Am. Math. Soc. 43, 133–142 (1937)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    F. Hausdorff, Grundzüge der Mengenlehre (Teubner, Leipzig, 1914)MATHGoogle Scholar
  7. 7.
    M. Lavrentieff, Contribution á la théorie des ensembles homéomorphes. Fund. Math. 6, 149–160 (1924)MATHGoogle Scholar
  8. 8.
    S. Lefschetz, Algebraic Topology. American Mathematical Society Colloquim Publications 27 (American Mathematical Society, New York, 1942)Google Scholar
  9. 9.
    M.R. Mather, Paracompactness and partition of unity, Ph.D. thesis, Cambridge University, 1965Google Scholar
  10. 10.
    E. Michael, A note on paracompact spaces. Proc. Am. Math. Soc. 4, 831–838 (1953)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    E. Michael, Local properties of topological spaces. Duke Math. J. 21, 163–171 (1954)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J. Nagata, On a necessary and sufficient condition of metrizability. J. Inst. Polyt. Osaka City Univ. 1, 93–100 (1950)MathSciNetMATHGoogle Scholar
  13. 13.
    M.E. Rudin, A new proof that metric spaces are paracompact. Proc. Am. Math. Soc. 20, 603 (1969)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    B.M. Scott, A “more topological” proof of the Tietze–Urysohn Theorem. Am. Math. Mon. 85, 192–193 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ju.M. Smirnov, On the metrization of topological spaces (Russian). Uspekhi Mat. Nauk 6(6), 100–111 (1951)MATHGoogle Scholar
  16. 16.
    A.H. Stone, Paracompactness and product spaces. Bull. Am. Math. Soc. 54, 977–982 (1948)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    J.W. Tukey, Convergence and Uniformity in Topology. Annals of Mathematics Studies, 2 (Princeton University Press, Princeton, 1940)Google Scholar
  18. 18.
    P. Urysohn, Über die Metrisation der kompakten topologischen Räume. Math. Ann. 92, 275–293 (1924)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    D.G. Wright, Tychonoff’s theorem. Proc. Am. Math. Soc. 120, 985–987 (1994)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Katsuro Sakai
    • 1
  1. 1.Department of Mathematics Faculty of EngineeringKanagawa UniversityYokohamaJapan

Personalised recommendations