Skip to main content

Large-Scale Landslide Inventory Mapping in Lesser Himalaya of Nepal Using Geographic Information System

  • Chapter
  • First Online:
Book cover GIS Landslide

Abstract

Large-scale landslides are huge deep-seated failed masses that occurred in the geological past. Some of them are dormant while some are still active, creeping, and reactivating causing problems in the form of small-scale failures. Unlike small-scale failures in which the failed masses were already replaced, large-scale landslides built and modified the topography that makes it unique and differentiate from the other stable slope. In the Nepal Himalaya, large-scale landslides are widely distributed in the Lesser Himalayan and Higher Himalayan zones. But, systematic database regarding the large-scale landslide is not available. So, this paper describes a methodology to delineate large-scale landslides and preparation of the inventory map in the Himalayan terrain. Different approaches of landslide inventory mapping using GIS techniques are discussed, and validation methods are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agliardia F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1–2):83–102

    Article  Google Scholar 

  • Amatya KM, Jnawali BM (1994) Geological map of Nepal. Scale: 1:1,000,000. Department of Mines and Geology, Kathmandu, Nepal

    Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A et al (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14

    Article  Google Scholar 

  • Aucelli PPC, Casciello E, Cesarano M et al (2012) A deep, stratigraphically and structurally controlled landslide: tha case of Mount La Civita (Molise, Italy). Landslides. doi:10.1007/s10346-012-0351-7

  • Bilham RK, Larson JF, Project Idylhim Members (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64

    Article  Google Scholar 

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109(3–4):132–147

    Article  Google Scholar 

  • Calcaterra D, Ramondini M, Calò F, Longobardi V, Parise M, Galzerano CM (2008) DInSAR techniques for monitoring slow moving-landslides. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes. From the past to the future proceedings of the tenth international symposium on landslides and engineered slopes

    Google Scholar 

  • Cardinali M, Guzzetti F, Brabb EE (1990) Preliminary map showing landslide deposits and related features in New Mexico. U.S. Geological Survey Open File Report 90/293, 4 sheets, scale 1:500,000

    Google Scholar 

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20(2):117–135

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Proc Land 28(10):1125–1142

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides Types and Processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation research board special report 247. National Academy Press, WA

    Google Scholar 

  • Dahal RK (2006) Geology for technical students. Bhrikuti Academic Publication, Kathmandu

    Google Scholar 

  • Dikau R, Brunsden D, Schrott L et al (1996) Landslide recognition. Identification, movement and causes. Wiley & Sons, Chichester, Chichester

    Google Scholar 

  • Dortch JM, Owen LA, Haneberg WC et al (2009) Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quatern Sci Rev 28:1037–1054

    Article  Google Scholar 

  • Dramis F, Sorriso-Valvo M (1994) Deep-seated gravitational slope deformations, related landslides and tectonics. Eng Geol 38(3–4):231–243

    Article  Google Scholar 

  • EPOCH (1993) The temporal occurrence and forecasting of landslides in the European community (Ed: Flageollet, J. C.). Contract No. 90 0025, 3 Volumes

    Google Scholar 

  • Ganser A (1964) Geology of the Himalaya. Inter Science John Wiley, London

    Google Scholar 

  • Gerrard AJ, Gardner RAM (2000) The role of landsliding in shaping the landscape of the middle hills, Nepal. Geomorphol Suppl Bd 122:47–62

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1996) Map of sites historically affected by landslides and floods in Italy. Publication CNR GNDCI n. 1356, Scale 1:1,200,000

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P et al (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy. Environ Manag 25(3):247–363

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Hasegawa S, Dahal RK, Yamanaka M et al (2009) Causes of large-scale landslides in the Lesser Himalaya of central Nepal. Environ Geol 57:1423–1434

    Article  Google Scholar 

  • Heuberger H, Masch L, Preuss E (1984) Quaternary landslides and rock fusion in Central Nepal and in the Tyrolean Alps. Mt Res Dev 4(4):345–362

    Article  Google Scholar 

  • Hradecky J, Pa´nek T (2008) Deep-seated gravitational slope deformations and their influence on consequent mass movements (case studies from the highest part of the Czech Carpathians). Nat Hazards 45:235–253

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis M (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238

    Google Scholar 

  • Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geologyand hydrogeology. In: Proceedings of fifth international symposium in landslides Rotterdam, Balkema

    Google Scholar 

  • Japan International Cooperation Agency (JICA), Department of Water Induced Disaster Prevention, Department of Road, Government of Nepal (2007) Progress report on the study on disaster risk management for Narayanghat-Mugling highway. Nippon Koei Co., Ltd

    Google Scholar 

  • Korup O, Strom AL, Weidinger JT (2006) Fluvial response to large-scale rock-slope failures-examples from the Himalayas, Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78:3–21

    Article  Google Scholar 

  • Korup O, Clague JJ, Hermanns RL et al (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589

    Article  Google Scholar 

  • Liu S, Wang Z (2008) Choice of surveying methods for landslides monitoring. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. In: Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F et al (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711

    Article  Google Scholar 

  • Maria FA, Gianfranco F, Hélène VI (2004) Rock slope stability analysis based on photogrammetric surveys. In: Lacerda W, Ehrlich M, Fontoura SAB, et al (eds) Landslides: evaluation and stabilization. Ninth international symposium on landslides. A.A. Balkema Publishers, Leiden, pp 789–794

    Google Scholar 

  • Martha TR, Kerle N, Jetten V et al (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • McKean J, Roering J (2003) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57(3–4):331–351

    Google Scholar 

  • Meigs AJ, Burbank DW, Beck RA (1995) Middle-Late Miocene (>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology 23(5):423–426

    Article  Google Scholar 

  • Mondini AC, Guzzetti F, Reichenbach P et al (2011) Semi-automatic recognition and mapping of rainfall induced shallow landslides using satellite optical images. Remote Sens Environ 115:1743–1757

    Article  Google Scholar 

  • Morgenstern NR, Martin CD (2008) Landslides: seeing the ground. In: Chen Z, Zhang J-M, Ho K, Wu F-Q, Li Z-K (eds) Landslides and engineered slopes: from the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes. Taylor & Francis, Xi’an

    Google Scholar 

  • Pande A, Joshi RC, Jalal DS (2002) Selected landslide types in the Central Himalaya: their relation to geological structure and anthropogenic activities. Environmentalist 22:269–287

    Article  Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP et al (1995) Inter-seismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22:751–754

    Article  Google Scholar 

  • Petley DN, Oven K, Mitchell W et al (2006) The role of global and regional precipitation pattern in landslide generation. In: Ashaari M (ed) Proceedings of the international conference on slopes Malaysia 2006. Public Works Department, Kualalampur

    Google Scholar 

  • Purtscheller F, Pirchl T, Sieder G (1995) Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Lang Tang Himal (Nepal). Environ Geol 26:32–38

    Article  Google Scholar 

  • Reichenbach P, Guzzetti F, Cardinali M (1998) Map of sites historically affected by landslides and floods in Italy, 2nd ed. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 1786, scale 1:1,200,000

    Google Scholar 

  • Sato HP, Yagi H, Moarai M et al (2007) Airborne lidar data measurement and landform classification mapping in Tomari-no-tai landslide area, Shirakami Mountains, Japan. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer, Berlin

    Google Scholar 

  • Shang Y, Yang Z, Li L et al (2003) A super large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Eng Geol 54:225–243

    Google Scholar 

  • Shroder JF, Bishop MP (1998) Mass movement in the Himalaya: new insights and research directions. Geomorphology 26:13–35

    Article  Google Scholar 

  • Smith MJ, Chandler J, Rose J (2009) High spatial resolution data acquisition for the geosciences: kite aerial photography. Earth Surf Proc Land 34(1):155–161

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (special report). National Research Council, Transportation and Research Board Special Report 247, Washington, DC, USA

    Google Scholar 

  • Stöcklin J (1980) Geology of Nepal and its regional frame. J Geol Soc Lond 137:1–34

    Article  Google Scholar 

  • Tarantino C, Blonda P, Pasquariello G (2004) Application of change detection techniques for monitoring man-induced landslide causal factors. In: Geoscience and remote sensing. Proceedings of the IGARSS symposium

    Google Scholar 

  • Timilsina M, Bhandary NP, Dahal RK, Yatabe R (2013) Distribution probability of large-scale landslides in central Nepal. Geomorphology 226:236–248

    Article  Google Scholar 

  • Upreti BN, Yoshida M (2005) Guidebook for Himalayan trekkers, series no. 1, geology and natural hazards along the Kaligandai Vallley, Nepal. Department of Geology, Tri-Chandra Campus, Tribhuvan University, Kathmandu, Nepal

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Govers G et al (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603

    Article  Google Scholar 

  • Van Den Eeckhaut M, Moeyersons J, Nyssen J et al (2009) Spatial patterns of old, deep-seated landslides: a case-study in the northern Ethiopian Highlands. Geomorphology 105:239–252

    Article  Google Scholar 

  • Van Westen CJ (2007) Mapping landslides: recent developments in the use of digital information. In: Turner A, Schuster RL (eds) Landslides and society? Proceedings of the first North American conference on landslides, Vail, Colorado, USA, June 3–8, 2007. Association of Environmental and Engineering Geologists, Vail Colorado

    Google Scholar 

  • van Westen CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special report 176: landslides: analysis and control. Transportation and Road Research Board, National Academy of Science, Washington D.C.

    Google Scholar 

  • Waltham T (1996) Very large landslides in the Himalayas. Geol Today (Sept–Oct), pp 181–185

    Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21(3):337–342

    Google Scholar 

  • Yagi H (2001) Landslide study using aerial photographs. In: Tianchi L, Chalise SR, Uprety BN (eds) Landslide hazard mitigation in the Hindu Kush-Himalayas. ICIMOD, Nepal

    Google Scholar 

  • Yagi H, Nakamura S (1995) Hazard mapping on large scale landslides in the lower Nepal Himalayas. Proceedings of International Seminar on Water Induced Disasters. DPTC-JICA, Kathmandu

    Google Scholar 

  • Yatabe R, Bhandary NP, Bhattarai D (2005) Landslide hazard mapping along major highways of Nepal. Ehime University and Nepal Engineering College

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manita Timilsina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Timilsina, M., Bhandary, N.P., Dahal, R.K., Yatabe, R. (2017). Large-Scale Landslide Inventory Mapping in Lesser Himalaya of Nepal Using Geographic Information System. In: Yamagishi, H., Bhandary, N. (eds) GIS Landslide. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54391-6_6

Download citation

Publish with us

Policies and ethics