Skip to main content

Survival, Reproduction and Calcification of Three Benthic Foraminiferal Species in Response to Experimentally Induced Hypoxia

  • Chapter
  • First Online:
Approaches to Study Living Foraminifera

Abstract

An experiment was conducted to test the survival rates, growth (calcification), and reproduction capacities of three benthic foraminiferal species (Ammonia tepida, Melonis barleeanus and Bulimina marginata) under strongly oxygen-depleted conditions alternating with short periods of anoxia. Protocols were determined to use accurate methods (1) to follow oxygen concentrations in the aquaria (continuously recorded using microsensors), (2) to distinguish live foraminifera (fluorogenic probe), (3) to determine foraminiferal growth (calcein-marked shells and automatic measurement of the shell size). Our results show a very high survival rate, and growth of A. tepida and M. barleeanus in all experimental conditions, suggesting that survival and growth are not negatively impacted by hypoxia. Unfortunately, no reproduction was observed for these species, so that we cannot draw firm conclusions on their ability to reproduce under hypoxic/anoxic conditions. The survival rates of Bulimina marginata are much lower than for the other two species. In the oxic treatments, the presence of juveniles is indicative of reproductive events, which can explain an important part of the mortality. The absence of juveniles in the hypoxic/anoxic treatments could indicate that these conditions inhibit reproduction. Alternatively, the perceived absence of juveniles could also be due to the fact that the juveniles resulting from reproduction (causing similar mortality rates as in the oxic treatments) were not able to calcify, and remained at a propagule stage. Additional experiments are needed to distinguish these two options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114(3–4):331–345

    CAS  Google Scholar 

  • Alve E, Bernhard JM (1995) Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar Ecol Prog Ser 116:137–151

    Google Scholar 

  • Alve E, Goldstein ST (2003) Propagule transport as a key method of dispersal in benthic foraminifera (Protista). Limnol Oceanogr 48(6):2163–2170

    Google Scholar 

  • Alve E, Murray JW (2001) Temporal variability in vertical distributions of live (stained) intertidal foraminifera, southern England. J Foraminiferal Res 31(1):12–24

    Google Scholar 

  • Barmawidjaja DM, Jorissen FJ, Puskaric S, van der Zwaan GJ (1992) Microhabitat selection by benthic foraminifera in the northern Adriatic Sea. J Foraminiferal Res 22:297–317

    Google Scholar 

  • Barnett PRO, Watson J, Connely D (1984) A multiple corer for taking virtually undisturbed sample from shelf, bathyal and abyssal sediments. Oceanol Acta 7:399–408

    Google Scholar 

  • Barras C, Geslin E, Duplessy JC, Jorissen F (2009) Optimisation of laboratory conditions to obtain reproduction and growth of the deep-sea benthic foraminifer Bulimina marginata. J Foraminiferal Res 39(3):155–165

    Google Scholar 

  • Barras C, Duplessy JC, Geslin E, Michel E, Jorissen F (2010) Calibration of δ18O of laboratory-cultured deep-sea benthic foraminiferal shells in function of temperature. Biogeosciences 7(1):1349–1356

    CAS  Google Scholar 

  • Bernhard JM (1988) Postmortem vital staining in benthic Foraminifera: duration and importance in population and distributional studies. J Foraminiferal Res 18:143–146

    Google Scholar 

  • Bernhard JM (2000) Distinguishing live from dead foraminifera: methods review and proper applications. Micropaleontology 46:38–46

    Google Scholar 

  • Bernhard JM, Alve E (1996) Survival, ATP pool, and ultrastructural characterization of benthic foraminiferafrom Drammensfjord (Norway): response to anoxia. Mar Micropaleontol 28(1):5–17

    Google Scholar 

  • Bernhard JM, Sen Gupta BK (1999) Foraminifera of oxygen-depleted environments. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic, Dordrecht

    Google Scholar 

  • Bernhard JM, Newkirk SG, Bowser SS (1995) Towards a non-terminal viability assay for Foraminiferan Protists. J Eukaryot Microbiol 42(4):357–367

    Google Scholar 

  • Bernhard JM, Blanks JK, Hintz CJ, Chandler GT (2004) Use of the fluorescent calcite marker calcein to label foraminiferal tests. J Foraminiferal Res 34:96–101

    Google Scholar 

  • Bernhard JM, Ostermann DR, Williams D, Blanks JK (2006) Comparison of two methods to identify live benthic foraminifera: a test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography 21(4): art. no. PA4210

    Google Scholar 

  • Bernhard J M, Edgcomb VP, Casciotti KL, McIlvin MR, Beaudoin DJ (2011) Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. ISME J 6:951–960. doi:10.1038/ismej.2011.171

    Google Scholar 

  • Bernhard JM, Casciotti KL, McIlvin MR et al (2012) Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. J Geophys Res 117(G3), G03002. doi:10.1029/2012JG001949

    Google Scholar 

  • Bollmann J, Quinn P, Vela M et al (2004) Automated particle analysis: calcareous microfossils. In: Image analysis, sediments and paleoenvironments. Kluwer, Dordrecht

    Google Scholar 

  • Boltovskoy E, Wright R (1976) Recent foraminifera. W. Junk, The Hague, 515 p

    Google Scholar 

  • Bouchet VMP, Debenay J-P, Sauriau P-G, Radford-Knoery J, Soletchnik P (2007) Effects of short-term environmental disturbances on living benthic foraminifera during the Pacific oyster summer mortality in the Marennes-Oléron Bay (France). Mar Environ Res 64:358–383

    CAS  Google Scholar 

  • Bouchet V, Sauriau P-G, Debenay J-P, Mermillod-Blondin F (2009) Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: first insight from axial tomodensitometry. J Exp Mar Biol Ecol 371:20–33

    Google Scholar 

  • Bradshaw JS (1957) Laboratory studies on the rate of growth of the foraminifer “Streblus beccarii (Linné) var. tepida (Cushman)”. J Paleontol 31:1138–1147

    Google Scholar 

  • Bradshaw JS (1961) Laboratory experiments on the ecology of foraminifera. Contrib Cushman Found Foramin Res 12:87–106

    Google Scholar 

  • Braman RS, Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal Chem 61:2715–2718

    CAS  Google Scholar 

  • Buzas MA (1977) Vertical distribution of foraminifera in the Indian River, Florida. J Foraminiferal Res 7(3):234–237

    Google Scholar 

  • Caralp HM (1989) Abundance of Bulimina exilis and Melonis barleeanum: relationship to the quality of marina organic matter. Geo-Mar Lett 9:37–43

    Google Scholar 

  • Chambers JM (1992) In: Chambers JM, Hastie TJ (eds) Statistical models in S, Chapman & Hall London, available at: http://www.lavoisier.fr/livre/notice.asp?id=OKRW3SA2OKOOWW. Accessed 12 Mar 2013

  • Corliss BH (1991) Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Mar Micropaleontol 17:195–236

    Google Scholar 

  • De Nooijer LJ, Toyofuku T, Kitazato H (2009) Foraminifera promote calcification by elevating their intracellular pH. Proc Natl Acad Sci USA 106(36):15374–15378. doi:10.1073/pnas.0904306106

    Google Scholar 

  • De Rijk S, Troelstra SR, Rohling EJ (1999) Benthic foraminiferal distribution in the Mediterranean Sea. J Foraminiferal Res 29:93–103

    Google Scholar 

  • De Rijk S, Jorissen FJ, Rohling EJ, Troelstra SR (2000) Organic flux control on bathymetric zonation of Mediterranean benthic foraminifera. Mar Micropaleontol 40:151–166

    Google Scholar 

  • Debenay J-P, Zhang J, Beneteau E et al (1998) Ammonia beccarii and Ammonia tepida (Foraminifera): morphofunctional arguments for their distinction. Mar Micropaleontol 34:235–244

    Google Scholar 

  • Debenay J-P, Guillou J-J, Redois F, Geslin E (2000) Distribution trends of foraminiferal assemblages in paralic environments: a base for using foraminifera as bioindicators. In: Martin RE (ed) Environmental micropaleontology: the application of microfossils to environmental geology. Kluwer, New York

    Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol 33:245–303

    Google Scholar 

  • Diaz R, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929

    CAS  Google Scholar 

  • Dissard D, Nehrke G, Reichart GJ, Bijma J (2010a) Impact of seawater pCO(2) on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences 7(1):81–93

    CAS  Google Scholar 

  • Dissard D, Nehrke G, Reichart GJ, Bijma J (2010b) The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: results from culture experiments. Geochim Cosmochim Acta 74(3):928–940. doi:10.1016/j.gca.2009.10.040

    CAS  Google Scholar 

  • Diz P, Barras C, Geslin E et al (2012) Incorporation of Mg and Sr and oxygen and carbon stable isotope fractionation in cultured Ammonia tepida. Mar Micropaleontol 92–93:16–28

    Google Scholar 

  • Dupuy C, Rossignol L, Geslin E, Pascal P-Y (2010) Ammonia tepida: a hard-shelled foraminifera predator of mudflat meio-macrofaunal metazoan. J Foraminiferal Res 40(4):305–312

    Google Scholar 

  • Ellis BFS, Messina AR (1940) Catalogue of foraminifera. Special Publication. American Natural Museum, New York

    Google Scholar 

  • Ernst S, Bours R, Duijnstee I, van der Zwaan BD (2005) Experimental effects of an organic matter pulse and oxygen depletion on a benthic foraminiferal shelf community. J Foraminiferal Res 35(3):177–197

    Google Scholar 

  • Fenchel T (2012) Anaerobic eukaryotes. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for Eukaryote survival and paleontological strategies. Springer, Dordrecht

    Google Scholar 

  • Filipsson HL, Bernhard JM, Lincoln SA, McCorkle DC (2010) A culture-based calibration of benthic foraminiferal paleotemperature proxies: d18O and Mg/Ca results. Biogeosciences 7:1335–1347

    CAS  Google Scholar 

  • Fontanier C, Jorissen FJ, Licari L et al (2002) Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep Sea Res Part I 49:751–785

    CAS  Google Scholar 

  • Fontanier C, Jorissen FJ, Chaillou G et al (2005) Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of Biscay: faunal response to focusing of refractory organic matter. Deep Sea Res Part I 52(7):1189–1227

    Google Scholar 

  • Fontanier C, Jorissen FJ, Lansard B et al (2008) Live foraminifera from the open slope between Grand Rhône and Petit Rhône Canyons (Gulf of Lions, NW Mediterranean). Deep Sea Res Part I 55(11):1532–1553

    Google Scholar 

  • Frankel L (1975) Pseudopodia of surface and subsurface dwelling Miliammina fusca (Brady). J Foraminiferal Res 5:211–217

    Google Scholar 

  • Geslin E, Debenay J-P, Lesourd M (1998) Abnormal textures in the wall of deformed tests of Ammonia (Hyaline foraminifer). J Foraminiferal Res 28(2):148–156

    Google Scholar 

  • Geslin E, Heinz P, Hemleben C, Jorissen FJ (2004) Migratory response of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations. Mar Micropaleontol 53:227–243

    Google Scholar 

  • Geslin E, Risgaard-Petersen N, Lombard F et al (2011) Respiration rates of benthic foraminifera using oxygen microsensors. J Exp Mar Biol Ecol 396:108–114

    Google Scholar 

  • Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–289

    Google Scholar 

  • Goldstein ST, Corliss BH (1994) Deposit feeding selected deep-sea and shallow-water benthic foraminifera. Deep Sea Res Part I 41:229–241

    Google Scholar 

  • Goldstein ST, Moodley L (1993) Gametogenesis and the life cycle of the foraminifer Ammonia beccarii (Linne) forma tepida (Cushman). J Foraminiferal Res 23:213–220

    Google Scholar 

  • Hannah F, Rogerson A (1997) The temporal and spatial distribution of foraminiferans in marine benthic sediments of the Clyde Sea area, Scotland. Estuar Coast Shelf Sci 44(3):377–383

    Google Scholar 

  • Havach SM, Chandler GT, Wilson-Finelli A, Shaw TJ (2001) Experimental determination of trace element partition coefficients in cultured benthic foraminifera. Geochim Cosmochim Acta 65:1277–1283

    CAS  Google Scholar 

  • Hayward BW, Holzmann M, Grenfell H, Pawlowski P, Triggs C (2004) Morphological distinction of molecular types in Ammonia—towards a taxonomic revision of the world’s most commonly misidentifed foraminifera. Mar Micropaleontol 50:237–271

    Google Scholar 

  • Heinz P, Geslin E (2012) Ecological and biological response of benthic foraminifera under oxygen-depleted conditions: evidence from laboratory approaches. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for Eukaryote Survival and paleontological Strategies. Springer, Dordrecht

    Google Scholar 

  • Hess S, Jorissen F (2009) Distribution patterns of living benthic foraminifera from Cap Breton Canyon, Bay of Biscay: faunal response to sediment instability. Deep Sea Res Part I 56:1555–1578

    Google Scholar 

  • Hess S, Jorissen FJ, Venet V, Abu-Zied R (2005) Benthic foraminiferal recovery after recent turbidite deposition in Cap Breton canyon, Bay of Biscay. J Foraminiferal Res 35:114–129

    Google Scholar 

  • Hintz CJ, Chandler GT, Bernhard JM et al (2004) A physicochemically constrained seawater culturing system for production of benthic foraminifera. Limnol Oceanogr Methods 2:160–170

    Google Scholar 

  • Hintz CJ, Shaw TJ, Chandler GT et al (2006a) Trace/minor element:calcium ratios in cultured benthic foraminifera. Part I: Inter-species and inter-individual variability. Geochim Cosmochim Acta 70:1952–1963

    CAS  Google Scholar 

  • Hintz CJ, Shaw TJ, Bernhard JM et al (2006b) Trace/minor element:calcium ratios in cultured benthic foraminifera. Part II: Ontogenetic variation. Geochim Cosmochim Acta 70:1964–1976

    CAS  Google Scholar 

  • Høgslund S, Revsbech NP, Cedhagen T, Nielsen LP, Gallardo VA (2008) Denitrification, nitrate turnover, and aerobic respiration of benthic foraminiferans in the oxygen minimum zone off Chile. J Exp Mar Biol Ecol 359:85–91

    Google Scholar 

  • Jannink NT, Zachariasse WJ, van der Zwaan GJ (1998) Living (Rose Bengal stained) benthic foraminifera from the Pakistan continental margin (northern Arabian Sea). Deep Sea Res Part I 45:1483–1513

    Google Scholar 

  • Jørgensen BB (2005) Oxygen distribution and bioirrigation in Arctic fjord sediment (Svalbard, Barents Sea). Mar Ecol Prog Ser 292:85–95

    Google Scholar 

  • Jørgensen BB, Revsbech NP (1989) Oxygen-uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the Baltic Sea North-Sea transition. Ophelia Suppl 31(1):29–49

    Google Scholar 

  • Jorissen FJ (1988) Benthic foraminifera from the Adriatic Sea: principles of phenotypic variation. Utrecht Micropaleontol Bull 37:174

    Google Scholar 

  • Jorissen FJ (1999) Benthic foraminiferal microhabitats. In: Sen Gupta BK (ed) Foraminifera. Kluwer, Dordrecht

    Google Scholar 

  • Jorissen FJ, de Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleontol 26(1–4):3–15

    Google Scholar 

  • Jorissen FJ, Wittling I, Peypouquet JP, Rabouille C, Relexans JC (1998) Live benthic foraminiferal faunas off Cap Blanc, NW Africa: community structure and microhabitats. Deep Sea Res Part I 45:2157–2188

    CAS  Google Scholar 

  • Josefson AB, Widbom B (1988) Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Mar Biol 100(1):31–40

    Google Scholar 

  • Justic D, Rabalais NN, Turner RE (2003) Simulated responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading. J Mar Syst 42:115–126

    Google Scholar 

  • Kitazato H (1989) Vertical distribution of benthic foraminifera within sediments (Preliminary Report). Benthos Results Bull Jpn Assoc Benthol 35–36:41–51

    Google Scholar 

  • Kitazato H (1994) Diversity and characteristics of benthic foraminiferal microhabitats in four marine environments around Japan. Mar Micropaleontol 24:29–41

    Google Scholar 

  • Koho KA, Piña-Ochoa E (2012) Benthic foraminifera: inhabitants of low-oxygen environments. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for eukaryote survival and paleontological strategies. Springer, Dordrecht

    Google Scholar 

  • Koho KA, Kouwenhoven TJ, de Stigter HC, van der Zwaan GJ (2007) Benthic foraminifera in the Nazaré Canyon, Portuguese continental margin: sedimentary environments and disturbance. Mar Micropaleontol 66(1):27–51

    Google Scholar 

  • Koho KA, Langezaal AM, van Lith YA, Duijnstee IAP, van der Zwaan GJ (2008) The influence of a simulated diatom bloom on deep-sea benthic foraminifera and the activity of bacteria: A mesocosm study. Deep Sea Res Part I 55:696–719

    Google Scholar 

  • Koho KA, Piña-Ochoa E, Geslin E, Risgaard-Petersen N (2011) Survival and nitrate uptake mechanisms of foraminifers (Globobulimina turgida): laboratory experiments. FEMS Microbiol Ecol 75:273–283

    CAS  Google Scholar 

  • Langezaal AM, Jannink NT, Pierson ES, van der Zwaan GJ (2005) Foraminiferal selectivity towards bacteria: an experimental approach using a cell-permeant stain. J Exp Mar Bio Ecol 312:137–170

    Google Scholar 

  • Le Cadre V, Debenay JP (2006) Morphological and cytological responses of ammonia (foraminifera) to copper contamination: implication for the use of foraminifera as bioindicators of pollution. Environ Pollut 143(2):304–317

    Google Scholar 

  • Le Cadre V, Debenay J-P, Lesourd M (2003) Low pH effects on Ammonia beccarii test deformation: implications for using test deformations as a pollution indicator. J Foraminiferal Res 33(1):1–9

    Google Scholar 

  • Lee JJ, Faber WW, Anderson OR, Pawlowski J (1991) Life cycles of foraminifera. In: Lee JJ, Anderson J (eds) Biology of foraminifera. Academic, London

    Google Scholar 

  • McCorkle DC, Bernhard JM, Hintz CJ et al (2008) The carbon and oxygen stable isotopic composition of cultured benthic foraminifera. In: Austin WEN, James RH (eds) Biogeochemical controls on palaeoceanographic environmental proxies. Geological Society, London

    Google Scholar 

  • Middelburg J, Levin A (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293

    CAS  Google Scholar 

  • Mojtahid M (2007) Les foraminifères benthiques: bio-indicateurs d’eutrophisation naturelle et anthropique en milieu marin franc. Ph.D. dissertation, University of Angers, Angers, 389 p

    Google Scholar 

  • Mojtahid M, Jorissen F, Durrieu J et al (2006) Benthic foraminifera as bio-indicators of drill cutting disposal in tropical east Atlantic outer shelf environments. Mar Micropaleontol 61:58–75

    Google Scholar 

  • Mojtahid M, Jorissen F, Pearson TH (2008) Comparison of benthic foraminiferal and macrofaunal responses to organic pollution in the Firth of Clyde (Scotland). Mar Pollut Bull 56:42–76

    CAS  Google Scholar 

  • Mojtahid M, Griveaud C, Fontanier C, Anschutz P, Jorissen FJ (2010) Live benthic foraminiferal faunas along a bathymetrical transect (140–4800 m) in the Bay of Biscay (NE Atlantic). Rev Micropaleontol 53(3):139–162

    Google Scholar 

  • Moodley L, Hess C (1992) Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol Bull 183(1):94–98

    Google Scholar 

  • Moodley L, Van der Zwaan GJ, Herman PMJ, Kempers L, Van Breugel P (1997) Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar Ecol Prog Ser 158:151–163

    Google Scholar 

  • Moodley L, van der Zwaan GJ, Rutten GMW, Boom RCE, Kempers AJ (1998) Subsurface activity of benthic foraminifera in relation to porewater oxygen content: laboratory experiments. Mar Micropaleontol 34:91–106

    Google Scholar 

  • Moodley L, Boschker HTS, Middelburg JJ et al (2000) Ecological significance of benthic foraminifera: 13C labeling experiments. Mar Ecol Prog Ser 202:289–295

    Google Scholar 

  • Morigi C, Geslin E (2009) Quantification of benthic foraminiferal abundance. In: Danovaro R (ed) Methods for the study of deep-sea sediments, their functioning and biodiversity (from viruses to megafauna). CRC, Boca Raton

    Google Scholar 

  • Movellan A, Schiebel R, Zubkov MV, Smyth A, Howa H (2012) Protein biomass quantification of unbroken individual foraminifers using nano-spectrophotometry. Biogeosciences 9:3613–3623

    CAS  Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge

    Google Scholar 

  • Nardelli MP, Jorissen F, Pusceddu A et al (2010) Living benthic foraminiferal assemblages along a latitudinal transect at 1000m depth off the Portuguese margin. Micropaleontology 56:323–344

    Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc A 135(3):370–384

    Google Scholar 

  • Oren A (2012) Diversity of anaerobic prokaryotes and eukaryotes breaking long-established dogmas. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for eukaryote survival and paleontological strategies. Springer, Dordrecht

    Google Scholar 

  • Pascal P-Y, Dupuy C, Richard P, Niquil N (2008) Bacterivory in the common foraminifer Ammonia tepida: isotope tracer experiment and the controlling factors. J Exp Mar Bio Ecol 359:55–61

    CAS  Google Scholar 

  • Phipps M, Jorissen FJ, Pusceddu A, Bianchelli S, De Stigter H (2012) Live benthic foraminiferal faunas along a bathymetrical transect (282–4987 M) on the Portuguese Margin (ne Atlantic). J Foraminiferal Res 42(1):66–81

    Google Scholar 

  • Phleger FB, Soutar A (1973) Production of benthic foraminifera in three east Pacific oxygen minima. Micropaleontology 19:110–115

    Google Scholar 

  • Piña-Ochoa E, Høgslund S, Geslin E et al (2010a) Widespread occurrence of nitrate storage and denitrification among foraminifera and gromiids. Proc Natl Acad Sci USA 107:1148–1153

    Google Scholar 

  • Piña-Ochoa E, Koho K, Geslin E, Risgaard-Petersen N (2010b) Survival and life strategy of foraminifer, Globobulimina turgida, through nitrate storage and denitrification: laboratory experiments. Mar Ecol Prog Ser 417:39–49

    Google Scholar 

  • Poag CW (1978) Paired foraminiferal ecophenotypes in gulf coast estuaries: ecological and paleoecological implications. Trans Gulf Coast Assoc Geol Soc 28:395–420

    Google Scholar 

  • Pucci F, Geslin E, Barras C et al (2009) Survival of benthic foraminifera under hypoxic conditions: results of an experimental study using the cell tracker green method. Mar Pollut Bull 59:336–351

    CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing (version 2.14.0). R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478

    CAS  Google Scholar 

  • Revsbech NP, Madsen B, Jørgensen BB (1986) Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnol Oceanogr 31:293–304

    CAS  Google Scholar 

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S et al (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96

    CAS  Google Scholar 

  • Schmidt S, Amiard JC, Dupas B, Bradshaw JS (1957) Laboratory studies on the rate of growth of the foraminifer, “Streblus beccarii (Linné) var. tepida (Cushman)”. J Paleontol 31:1138–1147

    Google Scholar 

  • Schmiedl G, De Bovée F, Buscail R et al (2000) Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Mar Micropaleontol 40:167–188

    Google Scholar 

  • Schnitker D (1974) Ecotypic variation in Ammonia beccarii (Linné). J Foraminiferal Res 4(4):217–223

    Google Scholar 

  • Sen Gupta BK, Machain-Castillo ML (1993) Benthic foraminifera in oxygen-poor habitats. Mar Micropaleontol 20:183–201

    Google Scholar 

  • Stouff V, Lesourd M, Debenay J-P (1999a) Laboratory observations on asexual reproduction (schizogony) and ontogeny of Ammonia tepida with comments on the life cycle. J Foraminiferal Res 29:75–84

    Google Scholar 

  • Stouff V, Geslin E, Debenay J-P, Lesourd M (1999b) Origin of morphological abnormalities in Ammonia (foraminifera): studies in laboratory and natural environments. J Foraminiferal Res 29:152–170

    Google Scholar 

  • Theede H, Ponat A, Hiroki K, Schlieper C (1969) Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulfide. Mar Biol 2:325–337

    CAS  Google Scholar 

  • Treude T (2012) Biogeochemical reactions in marine sediments underlying anoxic water bodies. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for Eukaryote Survival and paleontological Strategies. Springer, Dordrecht

    Google Scholar 

  • Van der Zwaan GJ, Jorissen FJ (1991) Biofacial patterns in river-induced shelf anoxia. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia, vol 58. Geological Society Special Publication, pp 65–82

    Google Scholar 

  • Walton WR, Sloan BJ (1990) The genus Ammonia Brünnich, 1792: its geographic distribution and morphologic variability. J Foraminiferal Res 20(2):128–156

    Google Scholar 

  • Wenzhöfer F, Glud RN (2004) Small-scale spatial and temporal variability in coastal benthic O2 dynamics: effects of fauna activity. Limnol Oceanogr 49(5):1471–1481

    Google Scholar 

  • Wilson-Finelli A, Chandler GT, Spero HJ (1998) Stable isotope behavior in paleoceanographically important benthic foraminifera: results from microcosm culture experiments. J Foraminiferal Res 28:312–320

    Google Scholar 

Download references

Acknowledgements

We thank the crews of Côte de la Manche (PECH cruise) and of the Pelagia (PACEMAKER cruise) for good collaboration during the cruise. We thank the essential work of H. Howa for organizing the cruise and for sampling sediment in the Bay of Biscay. We tanks grateful N. Risgaard-Petersen for his help to analyze intracellular nitrate contents in the foraminifera. This work was founded by the French national program (EC2CO from CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Geslin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Geslin, E. et al. (2014). Survival, Reproduction and Calcification of Three Benthic Foraminiferal Species in Response to Experimentally Induced Hypoxia. In: Kitazato, H., M. Bernhard, J. (eds) Approaches to Study Living Foraminifera. Environmental Science and Engineering(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-54388-6_10

Download citation

Publish with us

Policies and ethics