Skip to main content

Piriform Cortex and Olfactory Tubercle

  • Chapter
  • First Online:

Abstract

This chapter describes perspectives on the possible functional logic of neuronal circuits in the central olfactory system. The central olfactory system has multiplex pathways and loops that connect the olfactory bulb, olfactory cortex, neocortex, thalamus, ventral striatum, amygdala, hippocampus, and hypothalamus. Among the complex circuits, this chapter focuses on the possible functional differentiation of “olfactory bulb axon–Ib association axon (afferent) circuits” and “deep association axon (recurrent and top-down) circuits” in the piriform cortex. It is hypothesized that the activity of the former circuits is induced mainly by olfactory sensory inputs during the on-line inhalation phase of the sniff cycle, whereas activity of the latter circuits may occur mainly during the off-line exhalation phase. This chapter also discusses the possible function of motivation modules in the neuronal circuits of the olfactory tubercle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barkai E, Bergman RE, Horwitz G, Hasselmo ME (1994) Modulation of associative memory function in a biophysical simulation of rat piriform cortex. J Neurophysiol 72:659–677

    CAS  PubMed  Google Scholar 

  • Bekkers JMSN (2013) Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci 36:429–438

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Chen S, Murakami K, Oda S, Kishi K (2003) Quantitative analysis of axon collaterals of single cells in layer III of the piriform cortex of the guinea pig. J Comp Neurol 465:455–465

    Article  PubMed  Google Scholar 

  • Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel R (2011) Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72:49–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haberly LB (1983) Structure of the piriform cortex of the opossum. I. Description of neuron types with Golgi methods. J Comp Neurol 213:163–187

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB (2001) Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 26:551–576

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB, Presto S (1986) Ultrastructural analysis of synaptic relationships of intracellularly stained pyramidal cell axons in piriform cortex. J Comp Neurol 248:464–474

    Article  CAS  PubMed  Google Scholar 

  • Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160:1726–1739

    Article  PubMed  Google Scholar 

  • Heimer L, Zaborszky L, Zahm DS, Alheid GF (1987) The ventral striatopallidothalamic projection: I. The striatopallidal link originating in the striatal parts of the olfactory tubercle. J Comp Neurol 255:571–591

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2003) Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J Neurosci 23:9305–9311

    CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Illig KR, Haberly LB (2003) Odor-evoked activity is spatially distributed in piriform cortex. J Comp Neurol 457:361–373

    Article  PubMed  Google Scholar 

  • Johnson DM, Illig KR, Behan M, Haberly LB (2000) New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J Neurosci 20:6974–6982

    CAS  PubMed  Google Scholar 

  • Kikuta S, Fletcher ML, Homma R, Yamasoba T, Nagayama S (2013) Odorant response properties of individual neurons in an olfactory glomerular module. Neuron 77:1122–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Lopez L, Osher J, Howard JD, Parrish TB, Gottfried JA (2010) Right orbitofrontal cortex mediates conscious olfactory perception. Psychol Sci 21:1454–1463

    Article  PubMed Central  PubMed  Google Scholar 

  • Litaudon P, Datiche F, Cattarelli M (1997) Optical recording of the rat piriform cortex activity. Prog Neurobiol 52:485–510

    Article  CAS  PubMed  Google Scholar 

  • Litaudon P, Amat C, Bertrand B, Vigouroux M, Buonviso N (2003) Piriform cortex functional heterogeneity revealed by cellular responses to odours. Eur J Neurosci 17:2457–2461

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB, Price JL (1983a) The laminar distribution of intracortical fibers originating in the olfactory cortex of the rat. J Comp Neurol 216:292–302

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB, Price JL (1983b) The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol 216:264–291

    Article  CAS  PubMed  Google Scholar 

  • Manabe H, Kusumoto-Yoshida I, Ota M, Mori K (2011) Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep. J Neurosci 31:8123–8133

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262:23–81

    Article  CAS  PubMed  Google Scholar 

  • Millhouse OE (1987) Granule cells of the olfactory tubercle and the question of the islands of Calleja. J Comp Neurol 265:1–24

    Article  CAS  PubMed  Google Scholar 

  • Millhouse OE, Heimer L (1984) Cell configurations in the olfactory tubercle of the rat. J Comp Neurol 228:571–597

    Article  CAS  PubMed  Google Scholar 

  • Mitsui S, Igarashi KM, Mori K, Yoshihara Y (2011) Genetic visualization of the secondary olfactory pathway in Tbx21 transgenic mice. Neural Syst Circuits 1:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Manabe H, Narikiyo K, Onisawa N (2013) Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex. Front Psychol 4:743

    Article  PubMed Central  PubMed  Google Scholar 

  • Murakami M, Kashiwadani H, Kirino Y, Mori K (2005) State-dependent sensory gating in olfactory cortex. Neuron 46:285–296

    Article  CAS  PubMed  Google Scholar 

  • Narikiyo K, Manabe H, Mori K (2013) Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep. J Neurophysiol 111:72–81

    Article  PubMed Central  PubMed  Google Scholar 

  • Neville KR, Haberly LB (2004) Olfactory cortex. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York, pp 415–454

    Chapter  Google Scholar 

  • Newman R, Winans SS (1980) An experimental study of the ventral striatum of the golden hamster. II. Neuronal connections of the olfactory tubercle. J Comp Neurol 191:193–212

    Article  CAS  PubMed  Google Scholar 

  • Plailly J, Howard JD, Gitelman DR, Gottfried JA (2008) Attention to odor modulates thalamocortical connectivity in the human brain. J Neurosci 28:5257–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poo C, Isaacson JS (2011) A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72:41–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price JL (1973) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108

    Article  CAS  PubMed  Google Scholar 

  • Rennaker RL, Chen CF, Ruyle AM, Sloan AM, Wilson DA (2007) Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J Neurosci 27:1534–1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schoenbaum G, Saddoris MP, Stalnaker TA (2007) Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies. Ann N Y Acad Sci 1121:320–335

    Article  PubMed Central  PubMed  Google Scholar 

  • Shipley MT, Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30:123–176

    Article  CAS  PubMed  Google Scholar 

  • Stettler DD, Axel R (2009) Representations of odor in the piriform cortex. Neuron 63:854–864

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bekkers JM (2012) Microcircuits mediating feedforward and feedback synaptic inhibition in the piriform cortex. J Neurosci 32:919–931

    Article  CAS  PubMed  Google Scholar 

  • Switzer RC 3rd, Hill J, Heimer L (1982) The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat: a cyto- and chemoarchitectural study. Neuroscience 7:1891–1904

    Article  CAS  PubMed  Google Scholar 

  • Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218:1133–1157

    Article  PubMed  Google Scholar 

  • Wilson DA, Sullivan RM (2011) Cortical processing of odor objects. Neuron 72:506–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Ul Quraish A, Murakami K, Ishikawa Y, Takayanagi M et al (2004) Quantitative analysis of axon collaterals of single neurons in layer IIa of the piriform cortex of the guinea pig. J Comp Neurol 473:30–42

    Article  PubMed  Google Scholar 

  • Yoshida I, Mori K (2007) Odorant category profile selectivity of olfactory cortex neurons. J Neurosci 27:9105–9114

    Article  CAS  PubMed  Google Scholar 

  • Zahm DS, Heimer L (1987) The ventral striatopallidothalamic projection. III. Striatal cells of the olfactory tubercle establish direct synaptic contact with ventral pallidal cells projecting to mediodorsal thalamus. Brain Res 404:327–331

    Article  CAS  PubMed  Google Scholar 

  • Zahm DS, Zaborszky L, Alheid GF, Heimer L (1987) The ventral striatopallidothalamic projection: II. The ventral pallidothalamic link. J Comp Neurol 255:592–605

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensaku Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Mori, K. (2014). Piriform Cortex and Olfactory Tubercle. In: Mori, K. (eds) The Olfactory System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54376-3_8

Download citation

Publish with us

Policies and ethics