Skip to main content

Coordination Chemistry in Self-Assembly Proteins

  • Chapter
  • First Online:
  • 1004 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Bioinorganic chemistry represents an area of growing importance in the development of nanomaterials and sustainable energy sources, because the coordination of metals in biological systems can effectively promote elaborate enzymatic reactions, such as photosynthesis, nitrogen fixation and biomineralization. Although such systems employ protein assemblies as molecular scaffolds, the important roles of protein assemblies have not yet been systematically investigated. We have recently published a number of reports concerning the rational design of protein assemblies for the integration of catalytic reactions with metal complexes, as well as the preparation of biominerals and mechanistic investigations of biomineralization processes with protein assemblies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertini I, Gray HB, Stiefel EI, Valentine JS (2007) Biological inorganic chemistry—structure and reactivity. University Science Books, Sausalito

    Google Scholar 

  2. Qi DF, Tann CM, Haring D, Distefano MD (2001) Chem Rev 101:3081–3111

    Article  CAS  Google Scholar 

  3. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080

    Google Scholar 

  4. Ueno T, Koshiyama T, Abe S, Yokoi N, Ohashi M, Nakajima H, Watanabe Y (2007) J Organomet Chem 692:142–147

    Article  CAS  Google Scholar 

  5. Ueno T, Abe S, Yokoi N, Watanabe Y (2007) Coord Chem Rev 251:2717–2731

    Article  CAS  Google Scholar 

  6. Ohashi M, Koshiyama T, Ueno T, Yanase M, Fujii H, Watanabe Y (2003) Angew Chem Int Ed 42:1005–1008

    Article  CAS  Google Scholar 

  7. Hunter CL, Lloyd E, Eltis LD, Rafferty SP, Lee H, Smith M, Mauk AG (1997) Biochemistry 36:1010–1017

    Google Scholar 

  8. Ascoli F, Fanelli M, Antonini E (1981) Methods Enzymol 76:72–87

    Article  CAS  Google Scholar 

  9. Ueno T, Ohashi M, Kono M, Kondo K, Suzuki A, Yamane T, Watanabe Y (2004) Inorg Chem 43:2852–2858

    Article  CAS  Google Scholar 

  10. Abe S, Ueno T, Reddy PAN, Okazaki S, Hikage T, Suzuki A, Yamane T, Nakajima H, Watanabe Y (2007) Inorg Chem 46:5137–5139

    Google Scholar 

  11. Satake Y, Abe S, Okazaki S, Ban N, Hikage T, Ueno T, Nakajima H, Suzuki A, Yamane T, Nishiyama H, Watanabe Y (2007) Organometallics 26:4904–4908

    Article  CAS  Google Scholar 

  12. Ueno T, Koshiyama T, Ohashi M, Kondo K, Kono M, Suzuki A, Yamane T, Watanabe Y (2005) J Am Chem Soc 127:6556–6562

    Article  CAS  Google Scholar 

  13. Chu GC, Katakura K, Zhang XH, Yoshida T, Ikeda-Saito M (1999) J Biol Chem 274:21319–21325

    Article  CAS  Google Scholar 

  14. Schuller DJ, Wilks A, de Montellano PRO, Poulos TL (1999) Nat Struct Biol 6:860–867

    Google Scholar 

  15. Sugishima M, Omata Y, Kakuta Y, Sakamoto H, Noguchi M, Fukuyama K (2000) Febs Lett 471:61–66

    Google Scholar 

  16. Hirotsu S, Chu GC, Unno M, Lee DS, Yoshida T, Park SY, Shiro Y, Ikeda-Saito M (2004) J Biol Chem 279:11937–11947

    Article  CAS  Google Scholar 

  17. Wang JL, de Montellano PRO (2003) J Biol Chem 278:20069–20076

    Article  CAS  Google Scholar 

  18. Ueno T, Yokoi N, Unno M, Matsui T, Tokita Y, Yamada M, Ikeda-Saito M, Nakajima H, Watanabe Y (2006) Proc Nat Acad Sci USA 103:9416–9421

    Article  CAS  Google Scholar 

  19. Wuttke DS, Bjerrum MJ, Winkler JR, Gray HB (1992) Science 256:1007–1009

    Article  CAS  Google Scholar 

  20. Babini E, Bertini I, Borsari M, Capozzi F, Luchinat C, Zhang XY, Moura GLC, Kurnikov IV, Beratan DN, Ponce A, Di Bilio AJ, Winkler JR, Gray HB (2000) J Am Chem Soc 122:4532–4533

    Google Scholar 

  21. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Adv Mater 19:1025–1042

    Article  CAS  Google Scholar 

  22. Theil EC (1987) Annu Rev Biochem 56:289–315

    Article  CAS  Google Scholar 

  23. Santambrogio P, Levi S, Arosio P, Palagi L, Vecchio G, Lawson DM, Yewdall SJ, Artymiuk PJ, Harrison PM, Jappelli R, Cesareni G (1992) J Biol Chem 267:14077–14083

    CAS  Google Scholar 

  24. Butts CA, Swift J, Kang S-g, Di Costanzo L, Christianson DW, Saven JG, Dmochowski IJ (2008) Biochemistry 47:12729–12739

    Article  CAS  Google Scholar 

  25. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Angew Chem Int Ed 43:2527–2530

    Google Scholar 

  26. Wong KKW, Mann S (1996) Adv Mater 8:928–932

    Article  CAS  Google Scholar 

  27. Yamashita I, Hayashi J, Hara M (2004) Chem Lett 33:1158–1159

    Article  CAS  Google Scholar 

  28. Zhang L, Swift J, Butts CA, Yerubandi V, Dmochowski IJ (2007) J Inorg Biochem 101:1719–1729

    Article  CAS  Google Scholar 

  29. Abe S, Hirata K, Ueno T, Morino K, Shimizu N, Yamamoto M, Takata M, Yashima E, Watanabe Y (2009) J Am Chem Soc 131:6958–6960

    Google Scholar 

  30. Abe S, Niemeyer J, Abe M, Takezawa Y, Ueno T, Hikage T, Erker G, Watanabe Y (2008) J Am Chem Soc 130:10512–10514

    Google Scholar 

  31. Aime S, Frullano L, Crich SG (2002) Angew Chem Int Ed 41:1017–1019

    Article  CAS  Google Scholar 

  32. Lucon J, Abedin MJ, Uchida M, Liepold L, Jolley CC, Young M, Douglas T (2010) Chem Commun 46:264–266

    Google Scholar 

  33. Yang Z, Wang X, Diao H, Zhang J, Li H, Sun H, Guo Z (2007) Chem Commun 3453–3455

    Google Scholar 

  34. Suzuki M, Abe M, Ueno T, Abe S, Goto T, Toda Y, Akita T, Yamadae Y, Watanabe Y (2009) Chem Commun 4871–4873

    Google Scholar 

  35. Niemeyer J, Abe S, Hikage H, Ueno T, Erker G, Watanabe Y (2008) Chem Commun 6519–6521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Ueno, T. (2013). Coordination Chemistry in Self-Assembly Proteins. In: Matsuo, Y., et al. Metal–Molecular Assembly for Functional Materials. SpringerBriefs in Molecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54370-1_7

Download citation

Publish with us

Policies and ethics