Skip to main content

Laboratory Study of Rock Deformation and Fracture

  • Chapter
  • First Online:
Book cover Ultra and Extremely Low Frequency Electromagnetic Fields

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1418 Accesses

Abstract

Our primary interest lies in the physics of electromagnetic phenomena associated with deformation and fracture of rocks. We start with a brief review of laboratory study of electromagnetic fields resulted from acoustic waves and shock polarization and magnetization effects in different materials. The vibration of charged dislocations and piezo-galvanic effect are considered to explain this effect in metals whereas the production and mobility of point and linear defects of atomic lattice is treated as a possible cause for the shock polarization effect in dielectrics. We discuss briefly a variety of electromagnetic phenomena caused by rock fracture. Among them are radiowave, optical and γ-radiation, and electron and ion emissions from fracturing rocks. We study the theories explaining the generation of strong electric fields in cracks and collapsing pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramova KB, Valitskiy VP, Zlatin IA, Peregud BP, Pukhonto IYa (1971) Radiation caused by fast deformation and fracture of metals. Rep USSR Acad Sci (Doklady Akademii Nauk SSSR) 201(6):1322–1325 (in Russian)

    Google Scholar 

  • Alekseev OG, Lazarev SG, Priemskiy DG (1984) On the theory of electromagnetic effects followed dynamical deformation of metals. J Appl Mech Tech Phys (Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki) 4:145–147 (in Russian)

    Google Scholar 

  • Allison FE (1965) Shock induced polarization in plastics. 1. Theory. J Appl Phys 36:2111–2113

    Google Scholar 

  • Altier J, Camassel J, Mathieu H (1979) Effects of uniaxial stress on luminescence of GaP(S). Phys Rev Lett 72A:239–241

    Google Scholar 

  • Anderson GM, Neilson FW (1957) Effects of strong shocks in ferromagnetic materials. Bull Am Phys Soc Ser II 2(6):302

    Google Scholar 

  • Andreev SG, Babkin AV, Baum FA, Imkhovik NA, Kobylkin IF, Kolpakov VI, Ladov SV, Odintsov VA, Orlenko LP, Okhitin VN, Selivanov VV, Soloviev VS, Stanyukovich KP, Chelyshev VP, Shekhter BI (2002) Physics of explosion. Vol 1 and 2, Third edition, revised edition. In: Orlenko LP (ed). Fizmatlit, Moscow, 832 pp (in Russian)

    Google Scholar 

  • Balbachan MYa, Parkhomenko EI (1983) Electret effect under rock fracture. Proc USSR Acad Sci Phys Earth (Izvestiya Akad Nauk SSSR Fizika Zemli) 8:104–108 (in Russian)

    Google Scholar 

  • Barsukov OM, Skovorodkin YuP (1969) Magnetic observations in detonation region Medeo. Proc USSR Acad Sci Phys Earth (Izvestiya Akad Nauk SSSR Fizika Zemli) 5:68–69 (in Russian)

    Google Scholar 

  • Baum FA, Orlenko LP, Stanyukovich KP, Chelyshev VP, Shekhter BI (1975) Physics of explosion. In: Stanyukovich KP (ed). Nauka, Moscow, 704 pp (in Russian)

    Google Scholar 

  • Belyaev LM, Nabatov VV, Martyshev YuN (1962) On glow duration under tribo- and crystal-luminescence. Crystallography (Kristallografiya) 7(4):576–580 (in Russian)

    Google Scholar 

  • Bivin YuK, Viktorov VV, Kulinich YuV, Chursin AS (1982) Electromagnetic radiation under dynamical deformation of different materials. Proc USSR Acad Sci Mech Solid (Izvestiya Akad Nauk SSSR Mekhanika Tverdogo Tela) 1:183–186 (in Russian)

    Google Scholar 

  • Brady BT, Rowell GA (1986) Laboratory investigation of the electrodynamics of rock fracture. Nature 321(6069):488–492

    Google Scholar 

  • Brooks W (1965) Shock-induced luminescence in quartz. J Appl Phys 36:2788–2789

    Google Scholar 

  • Brovkin YuV, Dunin SZ, Popryadukhin AP, Surkov VV, Tochkin IN (1990) Recording of the number of explosions by electromagnetic methods. J Mining Sci 26(6):522–526

    Google Scholar 

  • Bykova VV, Stakhovskiy IR, Fedorova TS, Khrustalev YaA, Deryagin BV, Toporov YuP (1987) Electron emission under fracture of rocks. Proc USSR Acad Sci Phys Earth (Izvestiya Akad Nauk SSSR Fizika Zemli) 8:87–90 (in Russian)

    Google Scholar 

  • Caffin JE, Goodfellow TL (1955) Electrical effects associated with the mechanical deformation of single crystals of alkali halides. Nature 176(4488):878–879

    Google Scholar 

  • Chandra BP, Shrivastava KK (1978) Dependence of mechanoluminescence in Rochelle-salt crystals on the charge-produced during their fracture. J Phys Chem Solids 39:939–940

    Google Scholar 

  • Cress GO, Brady BT, Rowell GA (1987) Sources of electromagnetic radiation fromfracture of rock samples in the laboratory. Geophys Res Lett 14:331–334

    Google Scholar 

  • Deryagin BV, Krotova NA, Smilga VG (1973) Adherence of solid. Nauka, Moscow, 279 pp (in Russian)

    Google Scholar 

  • Dickinson JT, Donaldson EE, Park MK (1981) The emission of electrons and positive ions from fracture of materials. J Mater Sci 16:2897–2908

    Google Scholar 

  • Dickinson JT, Jensen LC, Williams WD (1985) Fractoemission from lead zirconate-titanate. J Am Ceramic Soc 68(5):235–240

    Google Scholar 

  • Dobrovolskiy IP (1991) Theory of preparation of tectonic earthquake. Inst. Phys. Solid Earth, USSR Acad. Sci., Moscow, 224 pp (in Russian)

    Google Scholar 

  • Dunin SZ, Surkov VV (1979a) Dynamics of pore closing at shock front. Appl Math Mech 43(3):511–518

    Google Scholar 

  • Dunin SZ, Surkov VV (1979b) Structure of a shock wave front in a porous solid. J Appl Mech Tech Phys 20(5):612–618

    Google Scholar 

  • Dunin SZ, Surkov VV (1982) Effects of energy dissipation and melting on a shock compression of porous bodies. J Appl Mech Tech Phys 23(1):123–134

    Google Scholar 

  • Eichelberger RJ, Hauver GE (1962) Solid state transducers for recording of intense pressure pulses. Les ondes de detonation, Paris, pp 363–381

    Google Scholar 

  • Enomoto Y, Hashimoto H (1990) Emission of charged particles from indentation fracture of rocks. Nature 346(6285):641–643

    Google Scholar 

  • Enomoto Y, Hashimoto H (1992) Transient electrical activity accompanying rock under indentation loadings. Tectonophysics 211:337

    Google Scholar 

  • Enomoto Y, Akai M, Hashimoto H, Mori S, Asabe Y (1993) Exoelectron emission possibly related to geo-electromagnetic activities – microscopic aspect in geotribology. Wear 168:135–145

    Google Scholar 

  • Erzhanov ZhS, Kurskeev AK, Nysanbaev TE, Bushuev AV (1985) Geomagnetic observations during MASSA experiment. Proc USSR Acad Sci Phys Earth (Izvestiya Akad Nauk SSSR Fizika Zemli) 11:80–82 (in Russian)

    Google Scholar 

  • Finkel VM, Tyalin YuI, Golovin YuI, Muratova LN, Gorshenev MV (1979) Electrization of alkali-halide crystals during crystal split. Phys Solid (Fizika Tverdogo Tela) 21(7):1943–1947 (in Russian)

    Google Scholar 

  • Fishbach DB, Nowick AC (1958) Some transient electrical effects of plastic deformation in NaCl crystals. J Phys Chem Solids 5(4):302–315

    Google Scholar 

  • Freund F (2000) Time-resolved study of charge generation and propagation in igneous rocks. J Geophys Res 105:11001–11019

    Google Scholar 

  • Freund F (2002) Charge generation and propagation in rocks. J Geodynam 33:545–572

    Google Scholar 

  • Freund F, Pilorz S (2012) Electric currents in the Earth Crust and the generation of pre-earthquake ULF signals. In: Hayakawa M (ed) The frontier of earthquake prediction studies. Nihon-Senmontosho-Shuppan, Tokyo, pp 464–508

    Google Scholar 

  • Frid V, Bahat D, Goldbaum J, Rabinovitch A (2000) Experimental and theoretical investigation of electromagnetic radiation induced by rock fracture. Isr J Earth Sci 49:9–19

    Google Scholar 

  • Frid V, Rabinovitch A, Bahat D (2003) Fracture induced electromagnetic radiation. J Phys D Appl Phys 36:1620–1628. Doi:10.1088/0022-3727/36/13/330

    Google Scholar 

  • Funaki M, Syono Y (2008) Acquisition of shock remanent magnetization for demagnetized samples in a weak magnetic field (7 μT) by shock pressures 5–20 GPa without plasma-induced magnetization. Meteorit Planet Sci 43:1–13

    Google Scholar 

  • Gattacceca J, Berthe L, Boustie M, Vadeboin F, Rochette P, de Resseguier T (2008) On the efficiency of shock magnetization processes. Phys Earth Planet Inter 166:1–10

    Google Scholar 

  • Gershenzon NI, Zilpimiani DO, Mandzhgaladze PV, Pokhotelov OA, Chelidze ZT (1986) Electromagnetic emission of crack tip under fracture of ionic crystalls. Rep USSR Acad Sci (Doklady Akademii Nauk SSSR) 288(1):75–78 (in Russian)

    Google Scholar 

  • Gol’d RV, Markov GP, Mogila PG, Samokhvalov MA (1975) Impulsive electromagnetic radiation of minerals and rocks under mechanical loading. Proc USSR Acad Sci Phys Earth (Izvestiya Akad Nauk SSSR Fizika Zemli) 2:109–111 (in Russian)

    Google Scholar 

  • Goldbaum J, Frid V, Bahat D, Rabinovitch A (2003) An analysis of complex electromagnetic radiation signals induced by fracture. Meas Sci Technol 14:1839–1844. Doi:10.1088/0957-0233/14/10/314

    Google Scholar 

  • Goodenough JB (1954) A theory of domain creation and coercive force in polycrystalline ferromagnetic. Phys Rev Ser II 95(4):917–932

    Google Scholar 

  • Gorazdovskiy TYa (1967) Effect of hard radiation under shear fracture of solids. Lett J Tech Phys (Pisma v Zhurnal Tehnicheskoi Fiziki) 5(3):78–82 (in Russian)

    Google Scholar 

  • Gurevich LE (1957) On some electroacoustic effects. Proc USSR Acad Sci Ser Phys (Izvestiya Akad Nauk SSSR Seriya Fizicheskaya) 21(1):112–119 (in Russian)

    Google Scholar 

  • Hadjicontis V, Mavromatou C (1994) Transient electric signals prior to rock failure under uniaxial compression. Geophys Res Lett 21:1687–1690

    Google Scholar 

  • Hadjicontis V, Mavromatou C, Ninos D (2004) Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation. Nat Hazards Earth Syst Sci 4:633–639. Doi:10.5194/nhess-4-633-2004

    Google Scholar 

  • Halekas JS, Lin RP, Mitchell DL (2003) Magnetic fields of lunar multi-ring impact basins. Meteorit Planet Sci 38:565–578

    Google Scholar 

  • Hasbrouk WP, Allen JH (1972) Quasi-static magnetic field changes associated with CANNIKIN nuclear explosions. Bull Seism Soc Am 62:1479–1480

    Google Scholar 

  • Hood L, Richmond NC, Pierazzo E, Rochette P (2003) Distribution of crustal magnetic fields on Mars: shock effects of basin-forming impacts. Geophys Res Lett 30. Doi:10.1029/2002GL016657

    Google Scholar 

  • Hood LL, Artemieva NA (2008) Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193(2):485–502. Doi:10.1016/j.icarus.2007.08.023

    Google Scholar 

  • Kachurin LG, Kolev S, Psalomschikov VF (1982) Impulsive radioemission caused by water crystallization and some dielectrics. Rep USSR Acad Sci (Doklady Akademii Nauk SSSR) 267(2):347–500 (in Russian)

    Google Scholar 

  • Keller RN, Mitchell AC (1969) Electrical conductivity, demagnetization and high-pressure phase transition in shock-compressed iron. Solid State Comm 7:271–274

    Google Scholar 

  • Khatiashvily NG (1981) Electromagnetic emission of ionic crystalls stimulated by acoustic wave. Lett J Tech Phys (Pisma v Zhurnal Tehnicheskoi Fiziki) 7(18):1128–1132 (in Russian)

    Google Scholar 

  • Khatiashvili NG, Perel’man ME (1982) Generation of electromagnetic radiation during acoustic wave propagation in crystal dielectrics and several rocks. Rep USSR Acad Sci (Doklady Akademii Nauk SSSR) 263(4):839–842 (in Russian)

    Google Scholar 

  • Khatiashvili NG, Perel’man ME (1989) On the mechanism of seismo-electromagnetic phenomena and their possible role in the electromagnetic radiation during periods of earthquakes, foreshocks and aftershocks. Phys Earth Planet Inter 57:169–177

    Google Scholar 

  • Klein MJ (1965) The structure of explosively shocked MgO crystals. Phil Mag 12:735–739

    Google Scholar 

  • Klein MJ, Gager WB (1966) Generation of vacancies in MgO by deformation. J Appl Phys 37:4112

    Google Scholar 

  • Klyuev VA, Lipson AG, Toporov YuP, Aliev AD, Chalykh AE, Deryagin BV (1984) Characteristic radiation due to solid fracture and destruction of adhesive bonds in vacuum. Rep USSR Acad Sci (Dokl Akad Nauk SSSR) 279(2):415–419 (in Russian)

    Google Scholar 

  • Klyuev VA, Lipson AG, Toporov YuP, Deryagin BV, Luschikov VI, Strelkov AV, Shabalin EP (1986) On high energy processes under fracture of solids. Lett J Tech Phys (Pisma v Zhurnal Tehnicheskoi Fiziki) 12(21):1333–1337 (in Russian)

    Google Scholar 

  • Kondorsky EI (1959) On theory of magnetic state steadiness of ferromagnetic matter during magnetization. J Exp Theor Phys (Zhurnal Eksperimental’noy i Teoreticheskoy Fiziki) 37(4) (10):1110–1115 (in Russian)

    Google Scholar 

  • Kornfeld MI (1975) Electrization of ionic crystal under plastic deformation and splitting. Adv Phys Sci (Uspekhi Fizicheskikh Nauk) 116(2):327–340 (in Russian)

    Google Scholar 

  • Kornfeld MI (1978) Electrification of crystals by cleavage. J Phys D Appl Phys 11(9):1295–1301

    Google Scholar 

  • Krotova NA, Wollbrandt Y, Khrustalev YaA, Linke E, Deryagin BV (1975) Generation of high energy electrons under fracture of solids. Rep USSR Acad Sci (Dokl Akad Nauk SSSR) 225(2):342–344 (in Russian)

    Google Scholar 

  • Linde RK, Murri WJ, Doran DG (1966) Shock-induced electrical polarization of alkali halides. J Appl Phys 37(7):2527–2532

    Google Scholar 

  • Lipson AG, Berkov VI, Klyuev VA, Toporov YuP (1986) On generation of vacuum spark during facture of solid. Lett J Tech Phys (Pisma v Zhurnal Tehnicheskoi Fiziki) 12(21):1297–1300 (in Russian)

    Google Scholar 

  • Louzada KL, Stewart ST, Weiss BP, Gattacceca J, Lillis RJ, Halekas JS (2011) Impact demagnetization of the Martian crust: Current knowledge and future directions. Earth Planet Sci Lett 305:257–269. Doi:10.1016/j.epsl.2011.03.013

    Google Scholar 

  • Lyamkin AI, Matytsin AI, Staver AM (1983) Electron emission during shock wave output from powder into vacuum. J Appl Mech Tech Phys (Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki) 3:123–127 (in Russian)

    Google Scholar 

  • Malkovich RSh (1982) Generalized diffusion equations in a crystal. Phys Solid (Fizika Tverdogo Tela) 24(2):463–465 (in Russian)

    Google Scholar 

  • Martelli G, Smith PN, Woodward AJ (1989) Light, radiofrequency emission and ionization effects associated with rock fracture. Geophys J Int 98:397–401

    Google Scholar 

  • Mineev VN, Tyunyaev YuN, Ivanov AG, Novitsky EZ, Lisitsyn YuV (1967) Polarization of alkali-haloid crystals under shock loading. J Exp Theor Phys (Zhurnal eksperimental’noy i teoreticheskoy Fiziki) 53(4):1242–1248 (in Russian)

    Google Scholar 

  • Mineev VN, Ivanov AG (1976) Electromotive force produced by shock compression of a substance. Adv Phys Sci (Physics-Uspekhi) 19(5):400–419

    Google Scholar 

  • Misra A (1978) A physical model for the stress-induced electromagnetic effect in metals. J Appl Phys 16:195–199

    Google Scholar 

  • Molotskiy MI (1978) Dislocation mechanism of luminescence under fracture of metals. Phys Solid (Fizika Tverdogo Tela) 20(6):1651–1656 (in Russian)

    Google Scholar 

  • Molotskiy MI (1980) Dislocation mechanism of Misra effect. Lett J Tech Phys (Pisma v Zhurnal Tehnicheskoi Fiziki) 6(1):52–55 (in Russian)

    Google Scholar 

  • Molotskiy MI, Malyugin VB (1983) Energy spectrum of mechanoelectrons. Phys Solid (Fizika Tverdogo Tela) 25(10):2892–2895 (in Russian)

    Google Scholar 

  • Nagata T (1971) Introductory notes on shock remanent magnetization and shock demagnetization of igneous rocks. Pure Appl Geophys 89:159–177

    Google Scholar 

  • Nagata T, Funaki M, Dunn JR (1983) Shock remanent magnetization of meteorites. Mem Natl Inst Polar Res 30:435–446

    Google Scholar 

  • Neilson FW (1957) Effects of strong chocks in ferroelectric materials. Bull Am Phys Soc Ser II 2(6):302

    Google Scholar 

  • Neilson FW, Benedick WB (1960) Piezoelectric response of quarts beyond its Hugoniot elastic limit. Bull Am Phys Soc Ser II 5(7):511

    Google Scholar 

  • Nitsan U (1977) Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophys Res Lett 4:333–336

    Google Scholar 

  • Novikov VV, Mineev VN (1983) Magnetic effects under shock loading of magnetized ferro- and ferrimagnets. Phys Combust Explosion (Fizika goreniya i vzryva) 19(3):97–103 (in Russian)

    Google Scholar 

  • O’Keefe SG, Thiel DV (1995) A mechanism for the production of electromagnetic radiation during fracture of brittle materials. Phys Earth Planet Inter 89:127–135

    Google Scholar 

  • Ogawa T, Oike K, Miura T (1985) Electromagnetic radiations from rocks. J Geophys Res 90:6245–6249

    Google Scholar 

  • Parkhomenko EI (1968) Electrization phenomenon in rocks. Nauka, Moscow, 210 pp (in Russian)

    Google Scholar 

  • Parrot M (1995) Electromagnetic noise due to earthquake. In: Volland H (ed) Handbook of atmospheric electrodynamics. CRC Press, Boca Raton, London, Tokyo, pp 94–116

    Google Scholar 

  • Pohl J, Bleil U, Hornemann U (1975) Shock magnetization and demagnetization of basalt by transient stress up to 10 kbar. J Geophys 41:23–41

    Google Scholar 

  • Pohl J, Eckstaller A (1981) The effect of shock on remanence in multi-domain iron grains and implications for palaeointensity measurements. Lunar Planet Sci XII:851–853

    Google Scholar 

  • Pierce CB (1961) Effect of pressure on the ionic conductivity in doped crystals of sodium chloride, potassium chloride and rubidium chloride. Phys Rev 123:744–754

    Google Scholar 

  • Royce EB (1966) Anomalous shock-induced demagnetization of nickel ferrite. J Appl Phys 37(11):4066–4070

    Google Scholar 

  • Shapiro VA, Ivanov NA (1969) Dynamical characteristics of impact magnetization of natural ferromagnetic samples. Proc USSR Acad Sci Phys Earth (Izvestiya Akad Nauk SSSR Fizika Zemli) 5:50–60

    Google Scholar 

  • Shevtsov GI, Migunov NI, Sobolev GA, Kozlov EV (1975) Electrization of feldspar under deformation and destruction. Rep USSR Acad Sci (Dokl Akad Nauk SSSR) 225(2):313–315 (in Russian)

    Google Scholar 

  • Sirotkin VK, Surkov VV (1986) Mechanism of space charge generation in shock compression of ionic crystals. J Appl Mech Tech Phys 27(4):495–500

    Google Scholar 

  • Slabkiy LI, Odnovol LA, Kozenko VP (1973) On Roentgen radiation caused by collision between solids. Rep USSR Acad Sci (Dokl Akad Nauk SSSR) 210(2):319–320 (in Russian)

    Google Scholar 

  • Sobolev GA, Demin VM, Los’ VF, Maybuk YuYa (1980) Mechano-electrical radiation of ore bodies. Rep USSR Acad Sci (Dokl Akad Nauk SSSR) 252(6):1353–1355 (in Russian)

    Google Scholar 

  • Stacey FD (1964) The seismomagnetic effect. Pure Appl Geophys 58:5–23

    Google Scholar 

  • Stepanow AW (1933) Uber den mechanismus der plastisen deformation. Zs f Phys Bd 61(S):560–564

    Google Scholar 

  • Surkov VV (1986) Emission of electrons during fracture of crystal dielectric. J Tech Phys 56(9):1818–1820

    Google Scholar 

  • Surkov VV (1991) Electric field buildup in pore collapse. J Appl Mech Tech Phys 32(4):481–484

    Google Scholar 

  • Surkov VV (2000) Electromagnetic effects caused by earthquakes and explosions. MEPhI, Moscow, 448 pp (in Russian)

    Google Scholar 

  • Thiessen PA, Meyer K (1970) Tribolumineszenz bei verformungsvorgangen fester korper. Naturwiss Bd 57:423–427

    Google Scholar 

  • Tyapunina NA, Belozerova EP (1988) Charged dislocations and properties of alkali-haloid crystals. Adv Phys Sci (Physics-Uspekhi) 156(4):683–717 (in Russian)

    Google Scholar 

  • Tupik AA, Valuev NP (1980) Electromagnetic radiation under fracture of metals. Lett J Tech Phys (Pisma v Zhurnal Tehnicheskoi Fiziki) 6(2):82–85 (in Russian)

    Google Scholar 

  • Tupik AA, Valuev NP (1985) Ion emission under deformation and fracture of metals and alloys. Rep USSR Acad Sci (Dokl Akad Nauk SSSR) 281(4):852–853 (in Russian)

    Google Scholar 

  • Tyunyaev YuN, Mineev VN (1973) Polarization mechanism of aloyed alkali-haloid crystals in shock waves. Phys Solid (Fizika Tverdogo Tela) 15(5):1901–1904 (in Russian)

    Google Scholar 

  • Vladikina TN, Derjaguin BV, Kluev VA, Toporov YuP, Khrustalev YuA (1980) Emission of high-energy electrons during friction and wear of dielectrics. J Lubric Tech 102(4):552–555. doi:10.1115/1.3251594

    Google Scholar 

  • Urusovskaya AA (1968) Electrical effects under deformation of ionic crystals. Adv Phys Sci (Physics-Uspekhi) 96(1):39–60

    Google Scholar 

  • Warwick JW, Stoker C, Meyer TR (1982) Radio emission associated wit rock fracture: Possible application to the great Chilean earthquake on May 22, 1960. J Geophys Res 87:2851–2859

    Google Scholar 

  • Wayne RC (1969) Effect of hydrostatic and shock-wave compression’s on the magnetization. J Appl Phys 40:15–20

    Google Scholar 

  • Wollbrandt J, Linke E, Meyer K (1975) Emission of high energy electrons during mechanical treatment of alkali halides. Phys Status Solid A Appl Res A 27(2):K53–K55

    Google Scholar 

  • Wong JW, Linde RK, White RM (1969) Electrical signals in dynamically stressed ionic crystals: A dislocation model. J Appl Phys 40(10):4137–4145

    Google Scholar 

  • Yamada I, Masuda K, Mizutani H (1989) Electromagnetic and acoustic emission associated with rock fracture. Phys Earth Planet Inter 57:157–168

    Google Scholar 

  • Zakrevskiy VA, Pakhotin VA, Vaytkevich SK (1979) Electron emission under uniaxial compression of ionic crystals. Phys Solid (Fizika Tverdogo Tela) 21(3):723–729 (in Russian)

    Google Scholar 

  • Zeldovich YaB (1967) EMF arising during shock wave propagation in dielectric. J Exp Theor Phys (Zhurnal Eksperimental’noy i Teoreticheskoy Fiziki) 53(1):237–243 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Surkov, V., Hayakawa, M. (2014). Laboratory Study of Rock Deformation and Fracture. In: Ultra and Extremely Low Frequency Electromagnetic Fields. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54367-1_9

Download citation

Publish with us

Policies and ethics