Skip to main content

Life History and Stress Response of Scleractinian Corals

  • Chapter
  • First Online:
Coral Reef Science

Part of the book series: Coral Reefs of the World ((CORW,volume 5))

Abstract

Symbiosis with zooxanthellae (symbiotic dinoflagellates) and high capacities for clonal reproduction and regeneration are important life history traits of reef-building corals. This chapter reviews the life history of reef-building corals and the symbiotic relationships between corals and their algal symbionts and discusses possible collaborative defense systems against environmental stresses as well as mechanisms of adaptation to environmental changes in coral–zooxanthella symbiotic systems. Most corals associate with one main type of symbiont, although minor or cryptic symbiont types are often detected within a colony. The association between the coral host and algal symbiont appears to be stable, and the original symbiont often returns when corals recover from bleaching. Some corals, such as the massive Porites, exhibit high fidelity to certain types of algal symbionts and still have high stress tolerance as well as long life spans suggesting the possibility that stem cells and algal symbiont cells in such long-lived colonies accumulate mutations; in turn, if cells with a higher fitness for a new environment proliferate within a colony, the colony may be able to adapt to the new environment.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-4-431-54364-0_9.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-4-431-54364-0_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrego D, van Oppen MJH, Willis BL (2009a) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531

    Article  Google Scholar 

  • Abrego D, van Oppen MJH, Willis BL (2009b) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  Google Scholar 

  • Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156

    Article  Google Scholar 

  • Ahsan MK, Nakamura H, Yodoi J (2010) Redox regulation by thioredoxin in cardiovascular diseases. In: Das DK (ed) Methods in redox signaling. Mary Ann Liebert, New York, pp 159–165

    Google Scholar 

  • Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol 364:63–71

    Article  Google Scholar 

  • Ainsworth TD, Wasmund K, Ukani L, Seneca F, Yellowees D, Miller D, Leggat W (2011) Defining the tipping point. A complex cellular life/death balance in corals in response to stress. Sci Rep 1:160. doi:10.1038/srep00160

    CAS  Google Scholar 

  • Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134

    Article  CAS  Google Scholar 

  • Ayre DJ, Resing JM (1986) Sexual and asexual production of planulae in reef corals. Mar Biol 90:187–190

    Article  Google Scholar 

  • Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning scleractinian corals. Coral Reefs 5:111–116

    Article  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  Google Scholar 

  • Baker AC, Starger CJ, McClanahan T, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    Article  CAS  Google Scholar 

  • Bertucci A, Tambutté E, Tambutté S, Aallemand D, Zoccola D (2010) Symbiosis-dependent gene expression in coral-dinoflagellate association: cloning and characterization of a P-type H+-ATPase gene. Proc R Soc B 277:87–95

    Article  CAS  Google Scholar 

  • Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291:181–197

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2004a) Release of zooxanthellae with intact photosynthetic activity by the coral Galaxea fascicularis in response to high temperature stress. Mar Biol 145:329–337

    Article  CAS  Google Scholar 

  • Bhagooli R, Hidaka M (2004b) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis Stylophora pistillata, in response to thermal and light stresse. Comp Biochem Physiol Part A 137:547–555

    Google Scholar 

  • Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol 49:641–652

    Article  CAS  Google Scholar 

  • Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695

    Article  CAS  Google Scholar 

  • Brown BE, LeTissier MDA, Bythell JC (1995) Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Mar Biol 122:655–663

    Article  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. BioScience 43:320–326

    Article  Google Scholar 

  • Byler KA, Carmi-Veal M, Fine M, Goulet TL (2013) Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One 8(3):e59596

    Article  CAS  Google Scholar 

  • Coffroth MA, Poland DM, Petrou EL, Brazeau DA, Holmberg JC (2010) Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS One 5(10):e13258

    Article  CAS  Google Scholar 

  • Correa AMS, Baker AC (2009) Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 28:81–93

    Article  Google Scholar 

  • Correa AMS, Baker AC (2011) Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Glob Chang Biol 17:68–75

    Article  Google Scholar 

  • Correa AMS, McDonald MD, Baker AC (2009) Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detect clade D symbionts in Caribbean corals. Mar Biol 156:2403–2411

    Article  CAS  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  CAS  Google Scholar 

  • Desalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971

    Article  CAS  Google Scholar 

  • Domart-Coulon I, Tambutté S, Tambutté E, Allemand D (2004) Short term viability of soft tissue detached from the skeleton of reef-building corals. J Exp Mar Biol Ecol 309:199–217

    Article  Google Scholar 

  • Downs CA, Fauth JE, Downs VD, Ostrander GK (2010) In vivo cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. Ecotoxicology 19:171–184

    Article  CAS  Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53

    Article  Google Scholar 

  • Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B 274:3079–3085

    Article  Google Scholar 

  • Fautin DG, Mariscal RN (1991) Cnidaria: anthozoa. In: Microscopic anatomy of invertebrates, vol 2, Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, pp 267–358

    Google Scholar 

  • Franklin DJ, Hoegh-Guldberg O, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130

    Article  Google Scholar 

  • Geller JB, Fitzgerald LJ, King CE (2005) Fission in sea anemones: integrative studies of life cycle evolution. Integr Comp Biol 45:615–622

    Article  CAS  Google Scholar 

  • Gold DA, Jacobs DK (2013) Stem cell dynamics in Cnidaria: are there unifying principles? Dev Genes Evol 223:53–66

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  Google Scholar 

  • Hansen G, Daugbjerg N (2009) Symbiodinium natans sp. nov.: a ‘free-living’ dinoflagellate from Tenerife (Northeast-Atlantic Ocean). J Phycol 45:251–263

    Article  Google Scholar 

  • Harii S, Yasuda N, Lodoriguez-Lanetty IT, Hidaka M (2009) Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Mar Biol 156:1203–1212

    Article  Google Scholar 

  • Harii S, Yamamoto M, Hoegh-Guldberg O (2010) The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Mar Biol 157:1215–1224

    Article  CAS  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 59–85

    Chapter  Google Scholar 

  • Haryanti D, Hidaka M (2015) Temperature dependence of respiration in larvae and adult colonies of the corals Acropora tenuis Pocillopora damicornis. J Mar Sci Eng 3:509–519. doi:10.3390/jmse3030509

    Article  Google Scholar 

  • Haryanti D, Hidaka M (submitted) Developmental changes in the fluorescence intensity and distribution pattern of green fluorescent protein (GFP) in coral larvae and juveniles. Submitted

    Google Scholar 

  • Haryanti D, Yasuda N, Harii S, Hidaka M (2015) High tolerance of symbiotic larvae of Pocillopora damicornis to thermal stress. Zool Stud 54:52. doi:10.1186/s40555-015-0134-7

    Article  Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226

    Article  Google Scholar 

  • Hill M, Hill A (2012) The magnesium inhibition and arrested phagosome hypotheses: new perspectives on the evolution and ecology of Symbiodinium symbioses. Biol Rev 87:804–821

    Article  Google Scholar 

  • Hill R, Ralph PJ (2007) Post-bleaching viability of expelled zooxanthellae from the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 352:137–144

    Article  Google Scholar 

  • Hirose M, Hidaka M (2006) Early development of zooxanthella-containing eggs of the corals Porites cylindrica and Montipora digitata: the endodermal localization of zooxanthellae. Zool Sci 23:873–881

    Article  Google Scholar 

  • Hirose M, Kinzie RA III, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280

    Article  Google Scholar 

  • Hirose M, Yamamoto H, Nonaka M (2008a) Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp. Coral Reefs 27:247–254

    Google Scholar 

  • Hirose M, Reimer JD, Hidaka M, Suda S (2008b) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan. Mar Biol 155:105–112

    Article  Google Scholar 

  • Hoadley KD, Szmant AM, Pyott SJ (2011) Circadian clock gene expression in the coral Favia fragum over diel and lunar reproductive cycles. PLoS One 6:e19755

    Article  CAS  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120

    Article  Google Scholar 

  • Huang H-J, Wang L-H, Chen W-NU, Fang L-S, Chen C-S (2008) Developmentally regulated localization of endosymbiotic dinoflagellates in different tissue layers of coral larvae. Coral Reefs 27:365–372

    Article  Google Scholar 

  • Huertas IE, Rouco M, López-Rodas V, Costas E (2011) Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc R Soc B 278:3534–3543

    Article  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous coral. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Jokiel PL, Bigger CH (1994) Aspects of histocompatibility and regeneration in the solitary reef coral Fungia scutaria. Biol Bull 186:72–80

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Gulberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kerr AM, Baird AH, Hughes TP (2011) Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proc R Soc B 278:75–81

    Article  Google Scholar 

  • Kinzie RA III, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  Google Scholar 

  • Kojis BL (1986) Sexual reproduction in Acropora (Isopora) (Coelenterata: Scleractinia) I. A. cuneata and A. palifera on Heron Island reef, Great Barrier Reef. Mar Biol 91:291–309

    Article  Google Scholar 

  • Kopecky EJ, Ostrander GK (1999) Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell Dev Biol-Anim 35:616–624

    Article  CAS  Google Scholar 

  • Kramarsky-Winter E, Loya Y (1996) Regeneration versus budding in fungiid corals: a trade-off. Mar Ecol Prog Ser 134:179–185

    Article  Google Scholar 

  • LaJeunesse TC (2004) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6(12):e29013

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Shifts in relative dominance between closely related Symbiodinium spp. in coral reef host communities over environmental, latitudinal, and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellates symbiosis to environmental disturbance. Proc R Soc B 277:2925–2934

    Article  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 405–419

    Chapter  Google Scholar 

  • Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–480

    Article  CAS  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  Google Scholar 

  • Lough JM, Barnes DJ (1997) Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol 211:29–67

    Article  Google Scholar 

  • Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Article  Google Scholar 

  • Marlow HQ, Martindale MQ (2007) Embryonic development in two species of scleractinian coral embryos: Symbiodinium localization and mode of gastrulation. Evol Dev 9:355–367

    Article  Google Scholar 

  • McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7

    Article  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219

    Article  CAS  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian coral across the Great Barrier Reef: implication for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Mieog JC, van Oppen MJH, Berkelmans R, Stam WT, Olsen JL (2009) Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol Ecol Resour 9:74–82

    Article  CAS  Google Scholar 

  • Miller SW, Hayward DC, Bunch TA, Miller DJ, Ball EE, Bardwell VJ, Zarkower D, Brower DL (2003) A DM domain protein from a coral, Acropora millepora, homologous to proteins important for sex determination. Evol Dev 5:251–258

    Article  CAS  Google Scholar 

  • Miller DJ, Ball EE, Technau U (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21:536–539

    Article  CAS  Google Scholar 

  • Mise T, Hidaka M (2003) Degradation of zooxanthellae in the coral Acropora nasuta during bleaching. Galaxea, JCRS 5:32–38

    Google Scholar 

  • Nakaema S, Hidaka M (2015a) Fluorescent protein content and stress tolerance of two color morphs of the coral Galaxea fascicularis. Galaxea J Coral Reef Stud 17:1–11

    Google Scholar 

  • Nakaema S, Hidaka M (2015b) GFP distribution and fluorescence intensity in Galaxea fascicularis: developmental changes and maternal effects. Platax 12:19–27

    Google Scholar 

  • Nesa B, Hidaka M (2009a) High zooxanthella density shortens the survival time of coral cell aggregates under thermal stress. J Exp Mar Biol Ecol 368:81–87

    Google Scholar 

  • Nesa B, Hidaka M (2009b) Thermal stress increases oxidative DNA damage in coral cell aggregates. In: Proceedings of 11th international coral reef symposium (Florida), pp 144–148

    Google Scholar 

  • Nesa B, Baird AH, Harii S, Yakovleva I, Hidaka M (2012) Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool Stud 51:12–17

    CAS  Google Scholar 

  • Nilsson Sköld H, Obst M (2011) Potential for clonal animals in longevity and ageing studies. Biogerontology 12:387–396

    Article  Google Scholar 

  • Oguchi R, Terashima I, Kou J, Chow WS (2011) Operation of dual mechanisms that both lead to photoinactivation of photosystem II in leaves by visible light. Physiol Plant 142:47–55

    Article  CAS  Google Scholar 

  • Ojimi MC, Loya Y, Hidaka M (2012) Sperm of the solitary coral Ctenactis echinata exhibits a longer telomere than that of somatic tissues. Zool Stud 51:1475–1480

    CAS  Google Scholar 

  • Padilla-Gamiño JL, Pochon X, Bird C, Concepcion GT, Gates RD (2012) From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One 7:e38440

    Article  CAS  Google Scholar 

  • Padilla-Gamiño JL, Bidigare RR, Barshis DJ, Alamaru A, Hédouin L, Hernández-Pech X, Kandel F, Leon Soon S, Roth MS, Rodrigues LJ, Grottoli AG, Portocarrero C, Wagenhauser SA, Buttler F, Gates RD (2013) Are all eggs created equal? A case study from the Hawaiian reef-building coral Montipora capitata. Coral Reefs. doi:10.1007/s00338-012-0957-1

    Google Scholar 

  • Palmer CV, Chintan KM, Laura DM (2009) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298. doi:10.1371/journal.pone.0007298

    Article  CAS  Google Scholar 

  • Perez S, Weis V (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis. J Exp Biol 209:2804–2810

    Article  CAS  Google Scholar 

  • Permata DW, Hidaka M (2005) Ontogenetic changes in the capacity of the coral Pocillopora damicornis to originate branches. Zool Sci 22:1197–1203

    Article  Google Scholar 

  • Permata DW, Kinzie RA III, Hidaka M (2000) Histological studies on the origin of planulae of the coral Pocillopora damicornis. Mar Ecol Prog Ser 200:191–200

    Article  Google Scholar 

  • Pernice M, Dunn SR, Miard T, Dufour S, Dove S, Hoegh-Guldberg O (2011) Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS One 6:e16095

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  CAS  Google Scholar 

  • Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DDK, Gates RD (2010) Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65

    Article  CAS  Google Scholar 

  • Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One 7(1):e29816

    Article  CAS  Google Scholar 

  • Potts DC, Done TJ, Isdale PJ, Fisk DA (1985) Dominance of a coral community by the genus Porites (Scleractinia). Mar Ecol Prog Ser 23:79–84

    Article  Google Scholar 

  • Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc Roy Soc B 279:4352–4361

    Article  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD (2001) Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent. Mar Ecol Prog Ser 220:163–168

    Article  CAS  Google Scholar 

  • Ralph PJ, Larkum AWD, Kuhl M (2005) Temporal patterns in effective quantum yield of individual zooxanthellae expelled during bleaching. J Exp Mar Biol Ecol 316:17–28

    Article  Google Scholar 

  • Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D, Furla P (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273:4186–4198

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114

    Article  CAS  Google Scholar 

  • Rosic NN (2012) Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates. Appl Microbiol Biotechnol 94:29–37

    Article  CAS  Google Scholar 

  • Roth MS (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 5:422

    Article  Google Scholar 

  • Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991a) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 251:1348–1351

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991b) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  • Sammarco PW (1982) Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar Ecol Prog Ser 10:57–65

    Article  Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci U S A 105:10444–10449

    Article  CAS  Google Scholar 

  • Sampayo EM, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519

    Article  CAS  Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20

    Article  CAS  Google Scholar 

  • Saragosti E, Tchernov D, Katsir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 5:e12508

    Article  CAS  Google Scholar 

  • Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79

    Article  CAS  Google Scholar 

  • Shikina S, Chen CJ, Liou JY, Shao ZF, Chung YJ, Lee YH, Chang CF (2012) Germ cell development in the scleractinian coral Euphyllia ancora (Cnidaria, Anthozoa). PLoS One 7(7):e41569

    Article  CAS  Google Scholar 

  • Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–324

    Article  CAS  Google Scholar 

  • Shinzato C, Shoguchi E, Tanaka M, Satoh N (2012) Fluorescent protein candidate genes in the coral Acropora digitifera genome. Zool Sci 29:260–264

    Article  CAS  Google Scholar 

  • Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B 279:2609–2618

    Article  Google Scholar 

  • Smith LD, Hughes TP (1999) An experimental assessment of survival, re-attachment and fecundity of coral fragments. J Exp Mar Biol Ecol 235:147–164

    Article  Google Scholar 

  • Smith-Keune C, Dove S (2008) Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol 10:166–180

    Article  CAS  Google Scholar 

  • Stanley GD Jr (2006) Photosymbiosis and the evolution of modern coral reefs. Science 312:857–858

    Article  CAS  Google Scholar 

  • Stanley GD, Swart PK (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Article  Google Scholar 

  • Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA (2009) Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28:709–713

    Article  Google Scholar 

  • Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Loga D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6(1):e15854

    Article  CAS  Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284

    Article  Google Scholar 

  • Strychar KB, Sammarco PW (2008) Exaptation in corals to high seawater temperatures: low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. J Exp Mar Biol Ecol 369:31–42

    Article  Google Scholar 

  • Strychar KB, Coates M, Sammarco PW, Piva TJ (2004) Bleaching as a pathogenic response in scleractinian corals, evidenced by high concentrations of apoptotic and necrotic zooxanthellae. J Exp Mar Biol Ecol 304:99–121

    Article  Google Scholar 

  • Sunagawa S, Wilson EC, Thaler M, Smith ML, Ccaruso C, Pringle JR, Weis VM, Medina M, Schwarz JA (2009) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258

    Article  CAS  Google Scholar 

  • Suwa R, Hirose M, Hidaka M (2008) Seasonal fluctuation in zooxanthella composition and photo-physiology in the corals Pavona divaricata and P. decussata in Okinawa. Mar Ecol Prog Ser 361:129–137

    Article  CAS  Google Scholar 

  • Szmant-Froelich AM, Reutter M, Riggs L (1985) Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull Mar Sci 37:880–892

    Google Scholar 

  • Taguchi T, Mezaki T, Iwase F, Sekida S, Kubota S, Fukami H, Okuda K, Shinbo T, Oshima S, Iiguni Y, Testa JR, Tominaga A (2014) Molecular cytogenetic analysis of the scleractinian coral Acropora solitaryensis Veron & Wallace 1984. Zool Sci 31:89–94

    Article  CAS  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255

    Article  CAS  Google Scholar 

  • Takahashi S, Whitney SM, Badger MR (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci U S A 106:3237–3242

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535

    Article  CAS  Google Scholar 

  • Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowsky PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci U S A 108:9905–9909

    Article  CAS  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2005) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol. doi:10.1007/s00227-005-0114-2

    Google Scholar 

  • Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481

    Article  Google Scholar 

  • Tsuta H, Hidaka M (2013) Telomere length of the colonial coral Galaxea fascicularis at different developmental stages. Coral Reefs 32:495–502

    Article  Google Scholar 

  • Tsuta H, Shinzato C, Satoh N, Michio Hidaka M (2014) Telomere shortening in the colonial coral Acropora digitifera during Development. Zool Sci 31:129–134

    Article  CAS  Google Scholar 

  • Twan W-H, Hwang J-S, Lee Y-H, Wu H-F, Tung Y-H, Chang C-F (2006) Hormones and reproduction in scleractinian corals. Comp Biochem Physiol A 144:247–253

    Article  CAS  Google Scholar 

  • Udy JW, Hinde R, Vesk M (1993) Chromosomes and DNA in Symbiodinium from Australian hosts. J Phycol 29:314–320

    Article  Google Scholar 

  • Van Oppen MJH, Gates RD (2007) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  CAS  Google Scholar 

  • Van Oppen MJH, Souter P, Howells EJ, Heyward A, Berkelmans R (2011) Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3:405–423

    Article  CAS  Google Scholar 

  • Vizel M, Loya Y, Downs C, Kramarsky-Winter E (2011) A novel method for coral explant culture and micropropagation. Mar Biotechnol 13:423–432

    Article  CAS  Google Scholar 

  • Voolstra CR, Schwarz JA, Schnetzer J, Sunagawa S, Desalvo MK, Szmant AM, Coffroth MA, Medina M (2009) The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol Ecol 18:1823–1833

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci U S A 96:8007–8012

    Article  CAS  Google Scholar 

  • Watanabe H, Hoang VT, Mättner R, Holstein TW (2009) Immortality and the base of multicellular life: lessons from cnidarians stem cells. Semin Cell Dev Biol 20:1114–1125

    Article  CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  Google Scholar 

  • Wewengkang DS, Watanabe T, Hidaka M (2007) Studies on morphotypes of the coral Galaxea fascicularis from Okinawa: polyp color, nematocyst shape, and coenosteum density. Galaxea J Coral Reef Stud 9:49–59

    Article  Google Scholar 

  • Yakovleva I, Hidaka M (2004) Differential recovery of PSII function and electron transport rate in symbiotic dinoflagellates as possible determinant of bleaching susceptibility of corals. Mar Ecol Prog Ser 268:43–53

    Article  CAS  Google Scholar 

  • Yakovleva IM, Bhagooli R, Takemura A, Hidaka M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B 139:721–730

    Article  CAS  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperature. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

  • Yamashiro H, Hidaka M, Nishihira M, Poung-In S (1989) Morphological studies on skeletons of Diaseris fragilis, a free-living coral which reproduces asexually by natural autotomy. Galaxea 8:283–294

    Google Scholar 

  • Yamashita H, Koike K (2013) Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycol Res 61:68–80

    Article  CAS  Google Scholar 

  • Yeoh SR, Dai CF (2010) The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar Biol 157:351–359

    Article  Google Scholar 

  • Yuyama I, Watanabe T, Takei Y (2010) Profiling differential gene expression of symbiotic and aposymbiotic corals using a high coverage expression profiling (HiCEP) analysis. Mar Biotechnol. doi:10.1007/s10126-010-9265-3

    Google Scholar 

  • Yuyama I, Ito Y, Watanabe T, Hidak M, Suzuki Y, Nishida M (2012) Differential gene expression in juvenile polyps of the coral Acropora tenuis exposed to thermal and chemical stresses. J Exp Mar Biol Ecol 430–431:17–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Hidaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hidaka, M. (2016). Life History and Stress Response of Scleractinian Corals. In: Kayanne, H. (eds) Coral Reef Science. Coral Reefs of the World, vol 5. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54364-0_1

Download citation

Publish with us

Policies and ethics