Skip to main content

Transient Events

  • Chapter
  • First Online:
Schumann Resonance for Tyros

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 639 Accesses

Abstract

This chapter is concerned with the complete processing procedure of an ELF transient recoded by a typical SR receiver. Waveforms of the Poynting vector clearly indicate the direct and antipodal waves arriving at the observer. Amplitude spectra are obtained of vertical electric and two horizontal magnetic field components together with the complex spectra of the wave impedance and of the Poynting vector. The period of the phase oscillations of the Poynting vector (or the wave impedance) is used for establishing the source distance. After finding the source bearing, we obtain the coordinates of a lightning source. By comparing the observed spectra with the model data, we estimate the source current moment as a function of frequency. We also demonstrate that the field polarization of the recorded Q-burst is close to that of continuous field component obtained in the previous chapter. Afterwards, the wide-band records of the Q-bursts with exceptional quality are compared with the model waveforms showing exclusive reciprocity of data. The propagation velocity is evaluated of the pulsed ELF signal, and results of observations are explained. Finally, the worldwide data are presented on the parametric ELF pulse generated by a galactic gamma-ray flare of Dec. 27, 2004. A comparison of simultaneous records at six observatories allowed us to establish the source polarity and to locate the parametric source. The peculiarities are addressed of this unusual source in comparison with the ordinary terrestrial lightning strokes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al’pert YL (1973) Radio wave propagation and the ionosphere, vols 1 and 2. Consultants Bureau, New York, [1972, Nauka, Moscow (in Russian)]

    Google Scholar 

  • Al’pert YL (1990) Space plasma, vols 1 and 2. Cambridge University Press, Cambridge, New York, Melbourne, Sydney

    Google Scholar 

  • Ando Y, Maltsev P, Sukhynyuk A, Goto T, Yamauchi T, Hobara Y, Sekiguchi M, Ikegami Y, Sera M, Korepanov VE, Hayakawa M (2005) New ELF observation system at Moshiri, Japan and assessment of acquired data. J Atmos Electr 25(1):29–39

    Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YF (1977) Global electromagnetic resonances in the Earth-ionosphere cavity, Naukova Dumka, Kiev (in Russian), P 199

    Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YF (1980) Schumann resonances in the Earth-ionosphere cavity, New York, London, Paris, Peter Perigrinus, p 168

    Google Scholar 

  • Boccippio DJ, Williams ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites, ELF transients and positive ground strokes. Science 269:1088–1091

    Article  Google Scholar 

  • Burke CP, Jones DLl (1995) Global radiolocation in the lower ELF frequency band. J Geophys Res 100:26263–26271

    Article  Google Scholar 

  • Burke CP, Jones DLl (1996) On the polarity and continuing currents in unusually large lightning flashes deduced from ELF events. J Atmos Terr Phys 58:531–540

    Article  Google Scholar 

  • Danilov DL, Zhiglyavsky AA (eds) (1997) Principal component of the time series: the caterpillar method. St.-Petersburg state University, St-Petersburg, Russia (in Russian), p 307

    Google Scholar 

  • Fowler RA, Kotick BJ, Elliot RD (1967) Polarization analysis of natural and artificially induced geomagnetic micropulsations. J Geophys Res 72:2871–2875

    Article  Google Scholar 

  • Frederiks DD, Golenetskii SV, Palshin VD, Aptekar RL, Ilyinskii VN, Oleinik FP, Mazets EP, Cline TL (2007) Giant flare in SGR 1806-20 and its Compton reflection from the Moon. Astron Lett 33:1–18. doi:10.1134/S106377370701001X

    Article  Google Scholar 

  • Füllekrug M (1999) Global lightning triangulation. In: Proceedings of 11th international conference on atmospheric electricity, Guntersville, Alabama, June 7–11, 1999, pp 709–711

    Google Scholar 

  • Füllekrug M, Constable S (2000) Global triangulation of lightning discharges. Geophys Res Lett 27:333–336

    Article  Google Scholar 

  • Füllekrug M, Reising SC (1998) Excitations of Earth-ionosphere cavity resonances by sprite-associated lightning flashes. Geophys Res Lett 25:4145–4148

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC, Reising SC (1998) Ultra-slow tails of sprite associated lightning flashes. Geophys Res Lett 25:3495–3498

    Google Scholar 

  • Füllekrug M, Constable S, Heinson G, Sato M, Takahashi Y, Price C, Williams E (2000) Global lightning acquisition system installed. EOS Trans AGU 81(30):333

    Article  Google Scholar 

  • Greenberg E, Price C (2004) A global lightning location algorithm based on the electromagnetic signature in the Schumann resonance band. J Geophys Res 109:D21111. doi:10.1029/2004JD004845

    Article  Google Scholar 

  • Greenberg E, Price C (2007), Diurnal variations of ELF transients and background noise in the Schumann resonance band. Radio Sci 42:RS2S08. doi:10.1029/2006RS003477

  • Greenberg E, Price C, Yair Y, Ganot M, Bor J, Sátori G (2007) ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms. J Atmos Solar-Terr Phys 69(13):1569–1586

    Article  Google Scholar 

  • Hayakawa M (2009) A review on direction finding of VLF/ELF sferics. J Atmos Electr 29(1):35–52

    Google Scholar 

  • Hayakawa M, Ohta K (2006) The importance of direction finding technique for the study of VLF/ELF sferics and whistlers. IEEJ Trans Fundam Mater 126(2):65–70

    Article  Google Scholar 

  • Hayakawa M, Nickolaenko AP, Shvets AV, Hobara Y (2011) Recent studies of Schumann resonance and ELF transients. In: Wood MD (ed) Lightning: properties, formation and types, Chap. 3, Nova Sci Pub, pp 39–71

    Google Scholar 

  • Hayakawa M, Hobara Y, Suzuki T (2012) Lightning effects in the mesosphere and ionosphere. In: Cooray V (ed) Lightning electromagnetics, Chap. 16, Inst. Engineering and Technology, pp 611–646

    Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Tsuchiya N, Williams ER, Sera M, Ikegami Y, Hayakawa M (2000) New ELF observation site in Moshiri, Hokkaido, Japan and the results of preliminary data analysis. J Atmos Electr 20:99–109

    Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Hayakawa M, Ohta K, Fukunish H (2001) Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. Geophys Res Lett 28:935–938

    Article  Google Scholar 

  • Hobara Y, Hayakawa M, Williams E, Boldi R, Downes E (2006), Location and electrical properties of sprite-producing lightning from a single ELF site. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, elves and intense lightning discharges, vol 225. NATO Sci. Ser., Ser. II, Springer, Dordrecht, Netherlands, pp 211–235

    Google Scholar 

  • Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations. J Geophys Res 104:16943–16964

    Article  Google Scholar 

  • Hurley K, Boggs SE, Smith DM, Duncan RC, Lin R, Zoglauer A, Krucker S, Hurford G, Hudson H, Wigger C, Hajdas W, Thompson C, Mitrofanov I, Sanin A, Boynton W, Fellows C, von Kienlin A, Lichti G, Rau A, Cline T (2005) An exceptionally bright flare from SGR 1806–20 and the origins of short-duration big gamma-ray bursts. Nature 434:1098–1103

    Article  Google Scholar 

  • Inan US, Lehtinen NG, Moore RC, Hurley K, Boggs S, Smith DM, Fishman GJ (2007) Massive disturbance of the daytime lower ionosphere by the giant g-ray flare from magnetar SGR 1806–20. Geophys Res Lett 34:L08103. doi:10.1029/2006GL029145

    Article  Google Scholar 

  • Jones D Ll (1970a) Numerical computations of terrestrial ELF electromagnetic wave fields in the frequency domain. Radio Sci 5:803–809

    Article  Google Scholar 

  • Jones DLL (1970b) Propagation of ELF pulses in the Earth-ionosphere cavity and application to slow tail sferics. Radio Sci 5:1153–1163

    Article  Google Scholar 

  • Jones DLL, Kemp DT (1970) Experimental and theoretical observations of Schumann resonances. J Atmos Terr Phys 32:1095–1108

    Article  Google Scholar 

  • Lazebny BV, Nickolaenko AP (1976a) Synchronous observations of the ELF bursts in the frequency range of the Schumann resonances. Geomag Aeron 16:121–126 (in Russian)

    Google Scholar 

  • Lazebny BV, Nickolaenko AP (1976b) Diurnal variations of the ELF bursts number observed synchronously at Kharkov and Ulan-Ude. Geomagn Aeron 16:372–373 (in Russian)

    Google Scholar 

  • Marshall IH, Hale LC, Croskey CL, Lyons WA (1998) Electromagnetics of sprite and elve-associated sferics. J Atmos Solar-Terr Phys 60:771–786

    Article  Google Scholar 

  • Marshall RA, Inan US, Neubert T, Hughes A, Sátori G, Bor J, Collier A, Allin TH (2005) Optical observations geomagnetically conjugate to sprite-producing lightning discharges. Ann Geophys 23(6):2231–2237

    Article  Google Scholar 

  • Mereghetti S, Götz D, vonKienlin A, Rau A, Lichti G, Weidenspointner G, Jean P (2005) The first giant flare from SGR 1806-20: observations using the anticoincidence shield of the spectrometer on INTEGRAL. Astrophys J Lett 624:L105–L108. doi:10.1086/430669

    Article  Google Scholar 

  • Nakamura T, Sekiguchi M, Hobara Y, Hayakawa M (2010) A comparison of different source location methods for ELF transients by using the parent lightning discharges with known positions. J Geophys Res 115:A00E39. doi:10.1029/2009JA014992

  • Neubert T, Allin TH, Blanc E, Farges T, Haldoupis C, Mika A, Soula S, Knutsson L, van der Velde O, Marshall RA, Inan U, Sartori G, Bor J, Hughes A, Collier A, Laursen S, Rasmussen IL (2005) Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign. J Atmos Solar-Terr Phys 67:807–820. doi:10.1016/j.jastp.2005.02.004

    Article  Google Scholar 

  • Nickolaenko AP (2011) Source models for “parametric” Q–burst. J Atmos Electr 31(2):95–110

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity. Kluwer Academic Publishers, Dordrecht-Boston-London

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2010) Model disturbance of Schumann resonance by the SGR 1806–20 γ –ray flare on December 27, 2004. J Atmos Electr 30(1):1–11

    Google Scholar 

  • Nickolaenko AP, Kudintseva IG (1994) A modified technique to locate the sources of ELF transient events. J Atmos Solar-Terr Phys 56:1493–1498

    Article  Google Scholar 

  • Nickolaenko AP, Schekotov AYu (2011) Experimental detection of an ELF radio pulse associated with the gamma-ray burst of December 27, 2004. Radiophys Quantum Electron 54(1):2011. doi:10.1007/s11141-011-9268-6

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M, Kudintseva IG, Myand SV, Rabinowicz LM (1999) ELF sub-ionospheric pulse in time domain. Geophys Res Lett 26(999–1):002

    Google Scholar 

  • Nickolaenko AP, Hayakawa M, Ogawa T, Komatsu M (2008), Q-bursts: a comparison of experimental and computed ELF waveforms. Radio Sci 43:RS4014. doi:10.1029/2008RS003838

  • Nickolaenko AP, Kudintseva IG, Pechonaya O, Hayakawa M, Nakamura T, Hobara Y, Tanaka Y (2010) Impact of a gamma-ray burst on the Schumann resonance. Radiophys Quantum Electron 53(9–10):542–556. doi:10.1007/3

    Google Scholar 

  • Nickolaenko AP, Kudintseva IG, Pechony O, Hayakawa M, Hobara Y, Tanaka YT (2012) The effect of a gamma ray flare on Schumann resonances. Ann Geophys 30:1321–1329. doi:10.5194/angeo-30-1321-2012

    Article  Google Scholar 

  • Ogawa T, Komatsu M (2007) Analysis of Q-burst waveforms. Radio Sci 42:RS2S18. doi:10.1029/2006RS003493

  • Ogawa T, Tanaka Y, Miura T (1966a) On the frequency response of the ball antenna for measuring ELF noise signals. Spec Contr Geophys Inst Kyoto Univ 6:9–12

    Google Scholar 

  • Ogawa T, Tanaka Y, Miura T, Yasuhara M (1966b) Observations of natural ELF and VLF electromagnetic noises by using ball antennas. J Geomagn Geoelectr 18:443–454

    Article  Google Scholar 

  • Ogawa T, Tanaka Y, Fraser-Smith AC, Gendrin R (1967) Worldwide simultaneity of a Q-burst in the Schumann resonance frequency range. J Geomagn Geoelectr 19:377–384

    Article  Google Scholar 

  • Palmer DM, Barthelmy S, Gehrels N, Kippen RM, Cayton T, Kouveliotou C, Eichler D, Wijers RAMJ, Woods PM, Granot J, Lyubarsky YE, Ramirez-Ruiz E, Barbier L, Chester M, Cummings J, Fenimore EE, Finger MH, Gaensler BM, Hullinger D, Krimm H, Markwardt CB, Nousek JA, Parsons A, Patel S, Sakamoto T, Sato G, Suzuki M, Tueller J (2005) A giant γ-ray flare from the magnetar SGR 1806-20. Nature 434:1107–1109

    Article  Google Scholar 

  • Price, C., M. Asfur, W. Lyons and T. Nelson (2002), An improved ELF/VLF method for globally geolocating sprite-produced lightning, Geophys. Res. Lett., 29 (3), doi: 10.1029/2001GL013519

  • Price C, Greenberg E, Yair Y, Sàtori G, Bor J, Fukunish H, Sato M, Israelevich P, Moalem M, Devir A, Levin Z, Joseph JH, Mayo I, Ziv B, Sternlieb A (2004) Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the space shuttle Columbia. Geophys Res Lett 31(20):L20107. doi:10.1029/2004GL020711

    Article  Google Scholar 

  • Sato M, Fukunishi H, Kikuchi M, Yamagishi H, Lyons WA (2003) Validation of sprite-inducing cloud-to-ground lightning based on ELF observations at Syowa station in Antarctica. J Atmos Solar-Terr Phys 65:607–614

    Article  Google Scholar 

  • Schekotov AY, Molchanov OA, Hayakawa M, Fedorov EN, Chebrov VN, Sinitsin VI, Gordeev EE, Belyaev GG, Yagova NV (2007) ULF/ELF magnetic field variations from atmosphere induced by seismicity. Radio Sci 42:RS6S90. doi: 10.1029/2005RS003441

  • Schekotov AY, Molchanov OA, Hayakawa M, Fedorov EN, Chebrov VN, Sinitsin VI, Gordeev EE, Andreevsky SE, Belyaev GG, Yagova NV, Gladishev VA, Baransky LN (2008) About possibility to locate an EQ epicenter using parameters of ELF/ULF preseismic emission. Nat Hazards Earth Syst Sci 8:1237–1242

    Article  Google Scholar 

  • Schekotov AY, Pilipenko V, Shiokawa K, Fedorov E (2011) ULF impulsive magnetic response at mid-latitudes to lightning activity. Earth Planets Space 63(2):119–128. doi:10.5047/eps.2010.12.009

    Article  Google Scholar 

  • Shalimov SL, Bösinger T (2006) An alternative explanation for the ultra-slow tail of sprite-associated lightning discharges. J Atmos Solar-Terr Phys 68:814–820. doi:10.1016/j.jastp.2005.12.001

    Article  Google Scholar 

  • Sukhorukov AI, Stubbe P (1997) On ELF pulses from remote lightning triggering sprites. Geophys Res Lett 24(13):1639–1642

    Article  Google Scholar 

  • Surkov VV, Hayakawa M (2012) Underlying mechanisms of transient luminous events: a review. Ann Geophysicae 30:1185–1212

    Article  Google Scholar 

  • Tanaka YT, Terasawa T, Yoshida M, Horie T, Hayakawa M (2008) Ionospheric disturbances caused by SGR 1900 + 14 giant gamma ray flare in 1998: constraints on the energy spectrum of the flare. J Geophys Res 113:A07307. doi:10.1029/2008JA013119

    Article  Google Scholar 

  • Tanaka YT, Hayakawa M, Hobara Y, Nickolaenko AP, Yamashita K, Sato M, Takahashi Y, Terasawa T, Takahashi T (2011) Detection of transient ELF emission caused by the extremely intense cosmic gamma-ray flare of 27 December 2004. Geophys Res Lett 38:L08805. doi:10.1029/2011GL047008

    Article  Google Scholar 

  • Terasawa T, Tanaka YT, Takei Y, Kawai N, Yoshida A, Nomoto K, Yoshikawa I, Saito Y, Kasaba Y, Takashima T, Mukai T, Noda H, Murakami T, Watanabe K, Muraki Y, Yokoyama T, Hoshino M (2005) Repeated injections of energy in the first 600 ms of the giant flare of SGR 1806–20. Nature 434:1110–1111. doi:10.1038/nature03573

    Article  Google Scholar 

  • Troyan V, Hayakawa M (2002) Inverse geophysical problems. Terrapub, Tokyo, p 289

    Google Scholar 

  • Whitley T, Fullekrug M, Rycroft M, Bennett A, Wyatt F, Elliott D, Heinson G, Hitchman A, Lewis A, Sefako R, Fourie P, Dyers J, Thomson A, Flower S (2011), Worldwide extremely low frequency magnetic field sensor network for sprite studies. Radio Sci 46:RS4007. doi: 10.1029/2010RS004523

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nickolaenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nickolaenko, A., Hayakawa, M. (2014). Transient Events. In: Schumann Resonance for Tyros. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54358-9_9

Download citation

Publish with us

Policies and ethics