Skip to main content

Regular SR Parameters

  • Chapter
  • First Online:
  • 640 Accesses

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

This chapter presents the classification and samples of all three types of ELF radio signals. The continuous signal is a composition of individual pulses from the global lightning activity. Signals of the second kind are the ELF-flashes: the intense pulses from the nearby thunderstorms occurring within 1,000–2,000 km distance from the observatory. An ELF-flash overloads the input circuits, and is attributed usually to natural interference. The third type is the ELF transients or Q-bursts. These pulses arrive from the distant powerful strokes, while their amplitude surpasses the continuous background by a factor of 3–10. Q-bursts are recorded at a rate of one pulse in a minute. Afterwards, we concentrate on the ‘geophysical’ data obtained from the continuous SR records. We show in particular how to estimate the area occupied by the global thunderstorms from the diurnal/seasonal variations of the observed peak frequency in the resonance spectra. Resonance data were verified by orbital optical observations of midnight lightning flashes. Diurnal motions and seasonal drifts of global thunderstorms are estimated by using the electric and magnetic field records, as well as seasonal variations of the effective area occupied by the lightning strokes. By using the singular spectral analysis (SSA), the annual and semi-annual variations were obtained. These are present in the long-term records of the SR intensity (amplitude) and of the peak frequency of the first mode. The presence of inter-annual variations is obvious. An exceptional similarity is demonstrated between the semi-annual component in the first mode frequency and analemma (median solar time). By using the three-source model, a possible impact was computed of the El Nino Southern Oscillation (ENSO) on the observed SR frequency. Another possible explanation is discussed that exploits the global inter-annual variations of the ionosphere height. By using the so-called ‘terminator effect’, we demonstrate difficulties in correct interpretation of resonance records.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlquist JE (1982) Normal mode global Rossby waves. J Atmos Sci 39:193–202

    Article  Google Scholar 

  • Balser M, Wagner CA (1960a) Observation of Earth-ionosphere cavity resonances. Nature 188:638–641

    Article  Google Scholar 

  • Balser M, Wagner C (1960b) Measurement of the spectrum of radio noise from 50 to 100 c/s. J Res NBS 64D:415–418

    Google Scholar 

  • Bannister PR (1999) Further examples of seasonal variations of ELF radio propagation parameters. Radio Sci 34:199–208

    Article  Google Scholar 

  • Belyaev GG, Schekotov AYu, Shvets AV, Nickolaenko AP (1999) Schumann resonances observed using poynting vector spectra. J Atmos Solar Terr Phys 61:751–763

    Article  Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YuF (1968) Diurnal variations of the natural frequencies of the Earth-ionosphere resonator in relation to the eccentricity of the geomagnetic field. Geomagn Aeron 8(2):198–206

    Google Scholar 

  • Bliokh PV, Bormotov VN, Kontorovich VM, Nickolaenko AP, Sapogova NA, Shulga VF, Filippov YF (1971) On the degeneracy lift in the spherical Earth-ionosphere cavity, Preprint of Institute of Radio-Physics and Electronics of Ukrainian Acadamy of Science, No. 10, Kharkov (in Russian)

    Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YuF (1977) Global electromagnetic resonances in the Earth-ionosphere cavity. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YF (1980) Schumann resonances in the Earth-ionosphere cavity. In: Jones DL (ed) Peter Peregrinus, Oxford, New York, Paris

    Google Scholar 

  • Boccippio DJ, Williams ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites, ELF transients and positive ground strokes. Science 269:1088–1091

    Article  Google Scholar 

  • Burke CP, Jones DL (1992) An experimental investigation of ELF attenuation rates in the Earth-ionosphere duct. J Atmos Terr Phys 54:243–254

    Article  Google Scholar 

  • Burke CP, Jones DL (1995) Global radiolocation in the lower ELF frequency band. J Geophys Res 100:26263–26271

    Article  Google Scholar 

  • Burke CP, Jones DL (1996) On the polarity and continuing currents in unusually large lightning flashes deduced from ELF events. J Atmos Terr Phys 58:531–540

    Article  Google Scholar 

  • Chrissan DA, Fraser-Smith AC (1996) Seasonal variations of globally measured ELF/VLF radio noise. Radio Sci 31:1141–1152

    Article  Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108(D1):4005 doi: 10.1029/2002JD002347

    Google Scholar 

  • Danilov DL, Zhiglyavsky AA (1997) Principal Component of the Time Series: the Caterpillar Method. St.-Petersburg state University, St.-Petersburg, Russia, p 307 (in Russian)

    Google Scholar 

  • Danilov DL (1996) Proceedings of statistical computing section of the American statistical association, p 156

    Google Scholar 

  • Fraser-Smith AC, McGill PR, Bernardi A, Helliwell RA, Ladd ME (1991) Global measurements of the low frequency radio noise. In: Kikuchi H (ed) Environmental and space electromagnetics. Springer, Tokyo, pp 191–200

    Chapter  Google Scholar 

  • Fraser-Smith AC, Bannister PR (1998) Reception of ELF signals at antipodal distances. Radio Sci 33:83–88

    Article  Google Scholar 

  • Füllekrug M (1995) Schumann resonances in magnetic field components. J Atmos Terr Phys 57:7479–7484

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC (1996) Further evidence for a global correlations of the Earth-ionosphere cavity resonances. Geophys Res Lett 23:2773–2776

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC (1997) Global lightning and climate variability inferred from ELF magnetic field observations. Geophys Res Lett 24:2411–2414

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith A, Reising SC (1998) Ultra-slow tails of sprite associated lightning flashes. Geophys Res Lett 25:3495–3498

    Google Scholar 

  • Füllekrug M, Reising SC (1998) Excitations of Earth-ionosphere cavity resonances by sprite-associated lightning flashes. Geophys Res Lett 25:4145–4148

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC, Bering EA, Few AA (1999) On the hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field in the Antarctic during December 1992. J Atmos Solar Terr Phys 61:745–750

    Article  Google Scholar 

  • Füllekrug M, Constable S (2000) Global triangulation of lightning discharges. Geophys Res Lett 27:333–336

    Article  Google Scholar 

  • Füllekrug M (2000) Dispersion relation for spherical electromagnetic resonances in the atmosphere. Phys Lett A 275:80–89

    Article  Google Scholar 

  • Füllekrug M, Mareev EA, Rycroft MJ (eds) (2006) Sprites, elves, and intense lightning discharges. Springer, Dordrecht

    Google Scholar 

  • Galejs J (1970) Frequency variations of Schumann resonances. J Geophys Res 75:3237–3251

    Article  Google Scholar 

  • Galejs J (1972) Terrestrial propagation of long electromagnetic waves. Pergamon Press, New York

    Google Scholar 

  • Gendrin R, Stefant R (1962) Effect of high altitude thermonuclear explosion on July 1962 on the resonance in the Earth-ionosphere cavity, experimental results. CR Acad Sci 255:2273–2275 (in French)

    Google Scholar 

  • Greifinger C, Greifinger P (1978) Approximate method for determining ELF eigen-values in the Earth-ionosphere waveguide. Radio Sci 13:831–837

    Article  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhiglyavsky A (2001) Analysis of time series structure. Chapman and Hall, CRC, Boca Raton

    Book  Google Scholar 

  • Harth W (1982) Theory of low frequency wave propagation. In: Volland H (ed) Handbook of atmospherics, vol 2. CRC Press, Boca Raton, pp 133–302

    Google Scholar 

  • Hayakawa M (2001) Final report, NASDA’s earthquake remote sensing frontier research, seismo-electromagnetic phenomena in the lithosphere, atmosphere and ionosphere. The University of Electro-Communications, Chofu-city, Tokyo, March 2011

    Google Scholar 

  • Hayakawa M, Sekiguchi M, Nickolaenko AP (2005) Diurnal variation of electric activity of global thunderstorms deduced from OTD data. J Atmos Electr 25(2):55–67

    Google Scholar 

  • Hayakawa M, Nickolaenko AP, Shvets AV, Hobara Y (2011) Recent studies of Schumann resonance and ELF transients. In: Wood MD (ed) Lightning: properties, formation and types, Chap. 3. Nova Science Publishers, pp 39–71

    Google Scholar 

  • Heckman SJ, Williams ER, Boldi R (1998) Total global lightning inferred from Schumann resonance measurements. J Geophys Res 103:31775–31779

    Article  Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Tsuchiya N, Williams ER, Sera M, Ikegami Y, Hayakawa M (2000a) New ELF observation site in Moshiri, Hokkaido Japan and the results of preliminary data analysis. J Atmos Electr 20(2):99–109

    Google Scholar 

  • Hobara Y, Yamaguchi H, Akinaga Y, Watanabe T, Koons HC, Rieder JL, Hayakawa M (2000b) New ULF/ELF measurement in Seikoshi, Izu peninsula, Japan, Abstracts and Program of International Workshop on Seismo Electromagnetics, The University of Electro-Communications, Chofu-city, Tokyo, 19–22 September, p 9

    Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Hayakawa M, Ohta K, Fukunishi H (2001) Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. Geophys Res Lett 28:935–938

    Article  Google Scholar 

  • Hobara Y, Harada T, Ohta K, Sekiguchi M, Hayakawa M (2011) A study of global temperature and thunderstorm activity by using the data of Schumann resonance observed at Nakatsugawa, Japan. J Atmos Electr 32(2):11–19

    Google Scholar 

  • Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations. J Geophys Res 104:16943–16964

    Article  Google Scholar 

  • IEEE Trans, Com-22, No. 4, (1974) Special issue on the ‘Sanguine’ project

    Google Scholar 

  • Jones DL (1969) The apparent resonance frequencies of the Earth-ionosphere cavity when excited by a single dipole source. J Geomagn Geoelectr 21:679–684

    Article  Google Scholar 

  • Jones DL (1970a) Numerical computations of terrestrial ELF electromagnetic wave fields in the frequency domain. Radio Sci 5:803–809

    Article  Google Scholar 

  • Jones DL (1970b) Propagation of ELF pulses in the Earth-ionosphere cavity and application to slow tail sferics. Radio Sci 5:1153–1163

    Article  Google Scholar 

  • Jones DL, Kemp DT (1970) Experimental and theoretical observations of Schumann resonances. J Atmos Terr Phys 32:1095–1108

    Article  Google Scholar 

  • Jones DL, Kemp DT (1971) The nature and average magnitude of the sources of transient excitation of Schumann resonances. J Atmos Terr Phys 33:557–566

    Article  Google Scholar 

  • Jones DL (1999) ELF sferics and lightning effects on the middle and upper atmosphere. In: Stuchly MA (ed) Modern radio science 1999. Published for URSI by Oxford University Press, pp 171–191

    Google Scholar 

  • Leblanc F, Aplin KL, Yair Y, Harrison RG, Lebreton JP, Blanc M (eds) (2008) Planetary Atmospheric Electricity, vol 30. Springer, New York. doi:10.1007/978-0-387-87664-1

  • Lyons WA, Armstrong RA, Bering EA III, Williams ER (2000) The hundred years hunt for the sprite. EOS 81:373–377 (Aug 15)

    Article  Google Scholar 

  • Madden T, Thompson W (1965) Low frequency electromagnetic oscillations of the Earth-ionosphere cavity. Rev Geophys 3:211–254

    Article  Google Scholar 

  • Marple SL Jr (1987) Digital spectral analyses with applications. Prentice-Hall, Englewood Cliffs, p 581

    Google Scholar 

  • McGorman DR, Rust WD (1998) The electrical nature of storms. Oxford University Press, Oxford

    Google Scholar 

  • Melnikov A, Price C, Sátori G, Füllekrug M (2004) Influence of solar terminator passages on Schumann resonance parameters. J Atmos Solar Terr Phys 66 (13-14 SPEC. ISS.):1187–1194. doi:10.1016/j.jastp.2004.05.014

  • Molchanov OA, Hayakawa M, Miyaki K (2001) VLF/LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling. Adv Polar Upper Atmos Res 15:146–158

    Google Scholar 

  • Nelson PH (1967) Ionospheric perturbations and Schumann resonance data, Ph.D. Thesis, MIT, Cambridge Mass

    Google Scholar 

  • Nickolaenko AP (1986) Scattering of the ELF radio waves by the global non-uniformities of the Earth-ionosphere cavity. Izv VUZov Radiofizika 29(1):33–40 (in Russian)

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1982) Possible global electromagnetic resonances on the planets of the solar system. Translated from Kosmicheskie Issledovaniya, vol 20(1). Plenum Publishing Corporation, pp 82–88

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1987) Applicability of ultralow—frequency global resonances for investigating lightning activity on Venus, Translated from Kosmicheskie Issledovaniya, vol 25(2). Plenum Publishing Corporation, pp 301–306

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1995) Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode. J Atmos Terr Phys 57(11):1345–1348

    Article  Google Scholar 

  • Nickolaenko AP, Korol MA, Shvets AV, Kudintseva IG (1996) Effective parameters of low frequency antennas. J Atmos Electr 16:81–88

    Google Scholar 

  • Nickolaenko AP (1997) Modern aspects of the Schumann resonance studies. J Atmos Solar Terr Phys 59(7):805–816

    Article  Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1998) Seasonal drift of the global thunderstorms and Schumann resonance frequencies. In: Proceedings of 7th international conference on mathematical modeling in electromagnetic theory, MMET’98, Kharkov, p 294

    Google Scholar 

  • Nickolaenko AP, Sátori G, Zieger B, Rabinowicz LM, Kudintseva IG (1998) Parameters of global thunderstorm activity deduced from long term Schumann resonance records. J Atmos Sol Terr Phys 60:387–399

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity. Kluwer Acadamic Publisher, Dordrecht, p 380

    Google Scholar 

  • Nickolaenko AP, Hayakawa M, Sekiguchi M (2006a) Variations in global thunderstorm activity inferred from the OTD records. Geophys Res Lett 33:L06823. doi:10.1029/2005GL024884

    Article  Google Scholar 

  • Nickolaenko AP, Pechony O, Price C (2006b) Model variations of Schumann resonance based on optical transient detector maps of global lightning activity. J Geophys Res 111:D23102. doi:10.1029/2005JD006844

    Article  Google Scholar 

  • Nickolaenko AP, Yatsevich EI, Shvets AV, Hayakawa M, Hobara Y (2011) Universal and local time variations deduced from simultaneous Schumann resonance records at three widely separated observatories, Radio Sci 46:RS5003. doi:10.1029/2011RS004663

  • Ogawa T, Tanaka Y, Miura T, Yasuhara M (1966) Observations of natural ELF and VLF electromagnetic noises by using ball antennas. J Geomagn Geoelectr 18:443–454

    Article  Google Scholar 

  • Ogawa T, Tanaka Y, Yasuhara M (1968) Diurnal variations of resonance frequencies in the Earth-ionosphere cavity. Contr Geophys Inst Kyoto University 8:15–20

    Google Scholar 

  • Ogawa T, Murakami Y (1973) Schumann resonance frequencies and the conductivity profiles in the atmosphere. Contr Geophys Inst Kyoto Univ 13:13–20

    Google Scholar 

  • Ogawa T, Otsuka S (1973) Comparison of observed Schumann resonance frequencies with the single dipole source approximation theories. Contr Geophys Inst Kyoto University 13:7–11

    Google Scholar 

  • Ogawa T, Kozai K, Kawamoto H (1979) Schumann resonances observed with a balloon in the stratosphere. J Atmos Terr Phys 41:135–142

    Article  Google Scholar 

  • Orville RE (1981) Lightning detection from space. In: Volland H (ed) Handbook of atmospherics, vol 2. CRC Press, Boca Raton, pp 80–96

    Google Scholar 

  • Orville RE, Henderson RW (1986) Global distribution of midnight lightning: September 1977 to August 1978. Mon Weather Rev 114:2640–2653

    Article  Google Scholar 

  • Pechony O, Price C (2004) Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan. Radio Sci 39:RS5007. doi:10.1029/2004RS003056

  • Pechony O (2007) Modeling and simulations of schumann resonance parameters observed at the mitspe Ramon field station (study of the day-night asymmetry influence on Schumann resonance amplitude records), Ph.D. Thesis, Tel-Aviv University, Israel, March 2007, p 92

    Google Scholar 

  • Pechony O, Price C, Nickolaenko AP (2007) Relative importance of the day-night asymmetry in Schumann resonance amplitude records. Radio Sci 42:RS2S06. doi:10.1029/2006RS003456

  • Polk C (1969) Relation of ELF noise and Schumann resonances to thunderstorm activity. In: Coroniti SC, Hughes J (eds) Planetary electrodynamics, vol 2. Gordon and Breach, New York, pp 55–83

    Google Scholar 

  • Price C, Melnikov A (2004) Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters. J Atmos Solar Terr Phys 66:1179–1185. doi:10.1016/j.jastp.2004.05.004

    Article  Google Scholar 

  • Price C, Finkelstein M, Starobinets B, Williams E (1999) A new Schumann resonance station at the Negev desert for monitoring global lightning activity. In: Proceedings of 11th international conference on atmospheric electricity, Guntersville, Alabama, 7–11 June 1999, pp 695–697

    Google Scholar 

  • Rabinowicz LM (1986) On the impact of the day-night non-uniformity of the ELF fields. Radiofizika Izv VUZov 29:635–644

    Google Scholar 

  • Rabinowicz LM (1988) Global electromagnetic resonances in non-uniform and anisotropic Earth-ionosphere cavity, Ph.D. Thesis, Kharkov (in Russian)

    Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sao K, Yamashita M, Tanahashi S (1971) Day to day variations of Schumann resonance frequency and occurrence of Pc1 in view of solar activity. J Geomagn Geoelectr 23:411–415

    Article  Google Scholar 

  • Sao K, Yamashita M, Tanahashi S, Jindoh H, Ohta K (1973) Experimental investigations of Schumann resonance frequencies. J Atmos Terr Phys 35:247–253

    Article  Google Scholar 

  • Sátori G, Szendröi J, Verö J (1996) Monitoring Schumann resonances—I. Methodology. J Atmos Terr Phys 58:1475–1482

    Article  Google Scholar 

  • Sátori G (1996) Monitoring Schumann resonances—II. Daily and seasonal frequency variations. J Atmos Terr Phys 58:1483–1488

    Article  Google Scholar 

  • Sátori G, Zieger B (1996) Spectral characteristics of Schumann resonances observed in Central Europe. J Geophys Res 101:29663–29669

    Article  Google Scholar 

  • Sátori G, Zieger B (1999) El Niño related meridional oscillation of global lightning activity. Geophys Res Lett 26:1365–1368

    Article  Google Scholar 

  • Sátori G, Williams ER, Zieger B, Boldi R, Heckman S, Rothkin K (1999) Comparison of long-term Schumann resonance records in Europe and North America. In: Proceedings of 11th international conference on atmospheric electricity, Guntersville, Alabama, 7–11 June 1999, pp 705–708

    Google Scholar 

  • Sátori G (2003) On the dynamics of the North-South seasonal migration of global lightning. In: Proceedings 12th international conference on atmospheric electricity, Versailles, France (Global Lightning and Climate). p 1

    Google Scholar 

  • Sátori G, Williams ER, Boccippio DJ (2003) On the dynamics of the north-south seasonal migration of global lightning, AGU Fall Meeting, San Francisco, 8–12 December 2003. p AE32A-0166

    Google Scholar 

  • Sátori G, Neska M, Williams E, Szendröi J (2006) Signatures of the day-night asymmetry of the Earth-ionosphere cavity in high time resolution Schumann resonance records. Radio Sci 42:RS2S10. doi:10.1029/2006RS003483

  • Sátori G, Mushtak V, Williams E (2009) Schumann resonance signatures of global lightning activity. In: Betz HD, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Dordrecht, pp 347–386

    Google Scholar 

  • Schlegel K, Füllekrug M (1999) Schumann resonance parameter changes during high-energy particle precipitation. J Geophys Res 104(A5):10111–10118

    Article  Google Scholar 

  • Schlegel K, Füllekrug M (2000) Diurnal harmonics in Schumann resonance parameters observed on both hemispheres. Geophys Res Lett 27:2805–2808

    Article  Google Scholar 

  • Shimakura S, Yamamoto T, Hayakawa M (1991) On the short and long periodicities in whistler occurrence rate and their implication. Res Lett Atmos Electr 11:23–36

    Google Scholar 

  • Sekiguchi M, Hayakawa M, Hobara Y, Nickolaenko A, Williams E (2004) Links of Schumann resonance intensity with average global land temperature. Radiophys Electron 9(2):383–391 (in Russian)

    Google Scholar 

  • Sekiguchi M, Hayakawa M, Nickolaenko AP, Hobara Y (2006) Evidence of a link between the intensity of Schumann resonance and global surface temperature. Ann Geophysicae 24:809–817

    Article  Google Scholar 

  • Sentman DD (1990) Approximate Schumann resonance parameters for a two-scale height ionosphere. J Atmos Terr Phys 52:35–46

    Article  Google Scholar 

  • Sentman DD, Fraser BJ (1991) Simultaneous observation of Schumann resonances in California and Australia: evidence for intensity modulation by local height of D region. J Geophys Res 96(9):15973–15984

    Article  Google Scholar 

  • Sentman DD (1995) Schumann resonances. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 1. CRC Press, Boca Raton, London, Tokyo, pp 267–298

    Google Scholar 

  • Sentman DD (1996) Schumann resonance spectra in a two-scale height Earth-ionosphere cavity. J Geophys Res 101:9474–9487

    Article  Google Scholar 

  • Special Issue of Journal of Atmospheric and Solar-Terrestrial Physics (2003), J Atmos Solar-Terr Phys 65(2) (Special issue on sprites)

    Google Scholar 

  • Uman MA (1987) The lightning discharge. Academic Press, Oxford

    Google Scholar 

  • Whitley T, Füllekrug M, Rycroft M, Bennett A, Wyatt F, Elliott D, Heinson G, Hitchman A, Lewis A, Sefako R, Fourie P, Dyers J, Thomson A, Flower S (2011) Worldwide extremely low frequency magnetic field sensor network for sprite studies. Radio Sci 46:RS4007. doi:10.1029/2010RS004523

  • Williams ER (1992) The Schumann resonance: a global tropical thermometer. Science 256:1184–1188

    Article  Google Scholar 

  • Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev 122:1917–1929

    Article  Google Scholar 

  • Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki ZI (2007) Sprite lightning heard round the world by Schumann resonance methods. Radio Sci 42:RS2S20. doi:10.1029/2006RS003498

    Google Scholar 

  • WMO (1956) World distribution of thunderstorm days, part 2: tangles of marine data and world maps, OMM-No. 21, TP. 21

    Google Scholar 

  • Yatsevich EI, Nickolaenko AP, Shvets AV, Rabinowicz LM (2006) Two component source model of Schumann resonance signal. J Atmos Electr 26(1):1–10

    Google Scholar 

  • Yatsevich EI, Nickolaenko AP, Pechony OB (2008) Diurnal and seasonal variations in the intensities and peak frequencies of the first three schumann-resonance modes. Radiophys Quantum Electron 51(7):528

    Article  Google Scholar 

  • Yatsevich EI (2009) Schumann resonance monitoring and source models, Ph.D., Kharkov, IRE NASU (in Russian)

    Google Scholar 

  • Yatsevich EI, Nickolaenko AP, Shvets AV, Hayakawa M, Hobara Y (2011) Schumann-resonance records at three observatories and ULF universal- and local-time variations. Radiophys Quantum Electron 53(12):706–716. doi:10.1007/s11141-011-9263-y

    Article  Google Scholar 

  • Zieger B, Sátori G (1999) Periodic variations of solar and tropospheric origins in Schumann resonance. In: Proceedings of 11th international conference on atmospheric electricity, Guntersville, Alabama, 7–11 June 1999, Alabama, pp 701–703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nickolaenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nickolaenko, A., Hayakawa, M. (2014). Regular SR Parameters. In: Schumann Resonance for Tyros. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54358-9_5

Download citation

Publish with us

Policies and ethics