Skip to main content

Extraordinary ELF Signals

  • Chapter
  • First Online:
Book cover Schumann Resonance for Tyros

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 645 Accesses

Abstract

In the present chapter we consider unusual manifestations of SR or the ELF signals that might originate from unusual sources. We describe the most curious cases here. First of all, we present the signatures of SR in the observed spectra of the wave arrival angle. This effect is interpreted as an impact of a complicated spatial distribution of the worldwide lightning activity, which interacts with the modal structure of the field. Such spectra may present additional information on positions and dynamics of the global lightning activity. We also show the data on the SR signatures in the spectra of short radio wave signals. The observed modulation might appear due to non-linear interaction of two waves in the ionosphere plasma. Model computations are presented demonstrating that a rocket start is able to generate the ELF noise. The signal appears due to fluctuations of the length of the conducting rocket flare in the outer fair weather field. Properties are discussed of resonance signals that were excited by a magnetospheric ELF source. Power spectra of these signals have a fine structure around SR maxima, a kind of ‘splitting’ seen directly in the amplitude spectra. Recent orbital observations are discussed of the SR and transverse resonance patterns by two different middle altitude satellites. These unexpected data provide deep impression, although they were not interpreted yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alperovich LS, Fedorov EN (2007) Hydromagnetic waves in the magnetosphere and the ionosphere. Springer, p 426

    Google Scholar 

  • Asano T, Suzuki T, Hiraki Y, Mareev E, Cho MG, Hayakawa M (2009) Computer simulations on sprite initiation for realistic lightning models with higher-frequency surges. J Geophys Res 114:A02310. doi:10.1029/2008JA013651

    Article  Google Scholar 

  • Béghin C, Simões F, Karsnoselskhikh V, Schwingenschuh K, Berthelier JJ, Besser B, Bettanini C, Grard R, Hamelin M, López-Moreno JJ, Molina-Cuberos GJ, GJ, Tokano T (2007) A Schumann-like resonance on Titan driven by Saturn’s magnetosphere possibly revealed by the Huygens probe. Icarus 191:251–266

    Article  Google Scholar 

  • Belyaev GG, Schekotov AYu, Shvets AV, Nickolaenko AP (1999) Schumann resonances observed using Poynting vector spectra. J Atmos Solar-Terr Phys 61:751–763

    Article  Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YF (1977) Global electromagnetic resonances in the Earth–ionosphere cavity. Naukova Dumka, Kiev, p 199 (in Russian)

    Google Scholar 

  • Bliokh PV, Nickolaenko AP, Filippov YF (1980) Schumann resonances in the Earth–ionosphere cavity. Paris, Peter Perigrinus, London, New York, p 168

    Google Scholar 

  • Cho M, Rycroft MJ (2001) Non-uniform ionization of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge. J Atmos Solar-Terr Phys 63:559–580

    Article  Google Scholar 

  • Egeland A, Larsen TR (1968) Fine structure of the Earth–ionosphere cavity resonances, J Geophys Res, 73, pp 4986–4989

    Google Scholar 

  • Fischer G, Gurnett DA (2011) The search for Titan lightning radio emissions. Geophys Res Lett 38:L08206. doi:10.1029/2011GL047316

    Google Scholar 

  • Füllekrug M, Mareev EA, Rycroft MJ (eds) (2006) Sprites, elves and intense lightning discharges. NATO Science Series, Springer, Dordrecht

    Google Scholar 

  • Ginzburg VL (1970) The propagation of electromagnetic waves in plasmas. Pergamon Press, Oxford, London, New York

    Google Scholar 

  • Gradstein C, Ryzhik IM (1963) Tables of integrals, sums, series and products. Phys-Math Publ, Moscow

    Google Scholar 

  • Grimalsky V, Koshevaya S, Kotsarenko A, Enriquez RP (2005) Penetration of the electric and magnetic field components of Schumann resonances into the ionosphere. Ann Geophys 23:2559–2564. doi:10.5194/angeo-23-2559-2005

    Article  Google Scholar 

  • Gurevich AV, Milikh GM, Roussel-Dupre R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A165:463

    Google Scholar 

  • Hayakawa M, Sazhin SS (1992) Mid-latitude and plasmaspheric hiss: a review. Planet Space Sci 40:1325–1338

    Article  Google Scholar 

  • Hayakawa M, Ohta K, Baba K (1994) Wave characteristics of tweek atmospherics deduced from the direction finding measurement and theoretical interpretations. J Geophys Res 99:10733–10743

    Article  Google Scholar 

  • Hayakawa M, Ohta K, Shimakura S, Baba K (1995) Recent findings on VLF/ELF sferics. J Atmos Terr Phys 57:467–477

    Article  Google Scholar 

  • Hiraki Y (2010) The phase transition theory of the sprite halo. J Geophys Res 115, A00E20. doi:10.1029/2009JA014384

  • Kudintseva IG, Nickolaenko AP, Hayakawa M (2009) Spatial fine structure of model electric pulses in the mesosphere above a Γ-shaped stroke of lightning. J Atmos Solar-Terr Phys 71:603–608

    Article  Google Scholar 

  • Kumar S, Deo A, Ramachandran V (2009) Nighttime D-region equivalent electron density determined from tweeks sferics observed in the south pacific region. Earth Planets Space 61:905–911

    Google Scholar 

  • Landau LD, Lifshits EM (1957) Electrodynamics of continuous media. Gostekhizdat, Moscow (in Russian)

    Google Scholar 

  • Madden T, Thompson W (1965) Low frequency electromagnetic oscillations of the Earth–ionosphere cavity. Rev Geophys 3:211–254

    Article  Google Scholar 

  • Molina-Cuberos GJ, Lammer H, Stumptner W, Schwingenschuh K, Rucker HO, Lopez-Moreno JJL, Rodrigo R, Tokano T (2001) Ionospheric layer induced by meteoric ionization in Titan’s atmosphere. Planet Space Sci 49:143–153

    Article  Google Scholar 

  • Molina-Cuberos GJ, Porti J, Besser BP, Morente JA, Margineda J, Lichtenegger HIM, Salinas A, Schwingenschuh K, Eichelberger HU (2004) Schumann resonances and electromagnetic transparence in the atmosphere of Titan. Adv Space Res 33:2309–2313

    Article  Google Scholar 

  • Molina-Cuberos GJ, Morente JA, Besser BP, Portí J, Lichtenegger H, Schwingenschuh K, Salinas A, Margineda J (2006) Schumann resonances as a tool to study the lower ionospheric structure of Mars. Radio Sci 41, RS1003

    Google Scholar 

  • Morente JA, Portí JA, Salinas A, Navarro EA (2008) Evidence of electrical activity on Titan from the Schumann resonances sent by Huygens probe. Icarus 195:802–811

    Article  Google Scholar 

  • Navarro EA, Soriano A, Morente JA, Portí JA (2007) A finite difference time domain model for the Titan ionosphere Schumann resonances. Radio Sci 42, RS2S04. doi:10.1029/2006RS003490

  • Nickolaenko AP (1972) On the ELF noise spectra peculiarities when excited by cosmic sources. Geomag Aeronomia 12:458–463 (in Russian)

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonance in the Earth–ionosphere cavity. Boston, London, Kluwer Academic Publishers, Dordrecht, p 380

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1982) Possible electromagnetic resonances on the planets of solar system. Cosm Res 20:67–71 Plenum Publishing Corporation

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1987) Applicability of ultralow-frequency global resonances for investigating lightning activity on Venus. Cosm Res 25(1):239–243 Plenum Publishing Corporation

    Google Scholar 

  • Nickolaenko AP, Besser BP, Schwingenschuh K (2003) Model computations of Schumann resonance on Titan. Planet Space Sci 51:853–862

    Article  Google Scholar 

  • Ogawa T, Kozai K, Kawamoto H, Yasuhara M, Huzita A (1979) Schumann resonances observed with a balloon in the stratosphere. J Atmos Terr Phys 41:135–142. doi:10.1016/0021-9169(79)90005-9

    Article  Google Scholar 

  • Ohya H, Nishino M, Murayama Y, Igarashi K, Saito A (2006) Using tweek atmospherics to measure the response of the low-middle latitude D-region ionosphere to a magnetic storm. J. Atmos. Solar-Terr. Phys 68:697–709

    Article  Google Scholar 

  • Ostapenko AA, Titova EE, Nickolaenko AP, Turunen JMT, Raita T (2010) Characteristics of VLF atmospherics near the resonance frequency of the Earth–ionosphere waveguide 1.6–2.3 kHz by observations in the auroral region. Ann Geophys 28:193–202

    Article  Google Scholar 

  • Outsu J (1960) Numerical study of tweeks based on waveguide mode theory. Proc Res Inst Atmospherics, Nagoya Univ 7:58–71

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (1999) Mesospheric electric field transients due to tropospheric lightning discharges. Geophys Res Lett 26(9):1247–1250

    Article  Google Scholar 

  • Pechony O, Price C (2004) Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan. Radio Sci 39, RS5007

    Google Scholar 

  • Price C, Greenberg E, Yair Y, Sátori G, Bor J, Fukunishi H, Sato M, Israelevich P, Moalem M, Devir A, Levin Z, Joseph JH, Mayo I, Ziv B, Sternlieb A (2004) Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the space shuttle Columbia. Geophys Res Lett 31(20):L20107. doi:10.1029/2004GL020711

    Article  Google Scholar 

  • Rycroft, M.J., K.A. Nicoll, K.L. Aplin, and R.G. Harrison (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Solar-Terr Phys. http://dx.doi.org/10.1016/j.jastp.2012.03.015

  • Rycroft MJ, Harrison RG (2011) Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit. Space Sci Rev 140:363–384. doi:10.1007/s11214-011-9830-8

    Google Scholar 

  • Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci Rev 137:83–105. doi:10.1007/s11214-008-9368-6

    Article  Google Scholar 

  • Sazhin SS, Hayakawa M (1992) Magnetospheric chorus emissions: a review. Planet Space Sci 40:681–697

    Article  Google Scholar 

  • Sentman DD (1990) Electrical conductivity of Jupiter’s shallow interior and the formation of a resonant planetary-ionospheric cavity. Icarus 88:73–86

    Article  Google Scholar 

  • Sentman DD (1995) Schumann Resonances. in Volland H (ed) Handbook of Atmospheric Electrodynamics. CRC Press, Boca Raton, London, Tokyo, vol 1, pp 267–298

    Google Scholar 

  • Shvets AV, Gorishnya YV (2011) A technique for lightning location and estimation of the lower ionosphere parameters using tweek-atmospherics. Telecommun Radio Eng 70(11):1013–1026

    Article  Google Scholar 

  • Shvets AV, Hayakawa M (1998) Polarization effects for tweek propagation. J Atmos Solar-Terr Phys 60:461–469

    Article  Google Scholar 

  • Simões F, Grard R, Hamelin M, Lopez-Moreno JJ, Schwingenschuh K, Beghin C, Berthelier JJ, Besser B, Brown VJB, Chabassiere M, Falkner P, Ferri F, Fulchignoni M, Hofe R, Jernej I, Jeronimo JM, Molina-Cuberos GJ, Rodrigo R, Svedhem H, Tokano T, Trautner R (2007) A new numerical model for the simulation of ELF wave propagation and the computation of eigenmodes in the atmosphere of Titan: did Huygens observe any Schumann resonance? Planet. Space Sci 55:1978–1989

    Article  Google Scholar 

  • Simões F, Rycroft M, Renno N, Yair Y, Aplin KL, Takahashi Y (2008a) Schumann resonances as a means of investigating the electromagnetic environment in the solar system. Space Sci Rev 137:455–471. doi:10.1007/s11214-008-9398-0

    Article  Google Scholar 

  • Simões F, Grard R, Hamelin M, López-Moreno JJ, Schwingenschuh K, Béghin C, Berthelier JJ, Lebreton JP, Molina-Cuberos GJ, Tokano T (2008b) The Schumann resonance: a tool for exploring the atmospheric environment and the subsurface of the planets and their satellites. Icarus 194:30–41. doi:10.1016/j.icarus.2007.09.020

    Article  Google Scholar 

  • Simões F, Berthelier JJ, Godefroy M, Yahi S (2009) Observation and modeling of the Earth–ionosphere cavity electromagnetic transverse resonance and variation of the D-region electron density near sunset. Geophys Res Lett 36:L14816. doi:10.1029/2009GL039286

    Article  Google Scholar 

  • Simões F, Pfaff R, Freudenreich H (2011) Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys Res Lett 38:L22101. doi:10.1029/2011GL049668

    Article  Google Scholar 

  • Tokano T, Molina-Cuberos GJ, Lammer H, Stumptner W (2001) Modeling of thunderclouds and lightning on Titan. Planet Space Sci 49:539–560

    Article  Google Scholar 

  • Toledo-Redondo S, Parrot M, Salinas A (2012) Variation of the first cut-off frequency of the Earth–ionosphere waveguide observed by DEMETER. J Geophys Res 117:A04321. doi:10.1029/2011JA017400

    Article  Google Scholar 

  • Trakhtengerts VY, Rycroft MJ (2008) Whistler and Alfvén Mode cyclotron masters in space. Cambridge Univ, Press 354p

    Book  Google Scholar 

  • Williams E, Kuo CL, Bór J, Sátori G, Newsome R, Adachi T, Boldi R, Chen A, Downes E, Hsu RR, Lyons W, Saba MMF, Taylor M, Su HT (2012) Resolution of the sprite polarity paradox: the role of halos. Radio Sci 47, RS2002 doi:10.1029/2011RS004794

  • Yampolski YM, Bliokh PV, Beley VS, Galushko VG, Kascheev SB (1997) Non-linear interaction between Schumann resonances and HF signals. J Atmos Solar-Terr Phys 59:335–342

    Article  Google Scholar 

  • Yang H, Pasko VP, Yair Y (2006) Three-dimensional finite difference time domain modeling of the Schumann resonance parameters on Titan, Venus, and Mars. Radio Sci 41(2), RS2S03. doi:10.1029/2005RS003431

  • Yashunin SA, Mareev EA, Rakov VA (2007) Are lightning M components capable of initiating sprites and sprite halos? J Geophys Res 112:D10109. doi:10.1029/2006JD007631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nickolaenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nickolaenko, A., Hayakawa, M. (2014). Extraordinary ELF Signals. In: Schumann Resonance for Tyros. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54358-9_13

Download citation

Publish with us

Policies and ethics