Skip to main content

Inverse Problem of SR

  • Chapter
  • First Online:
Schumann Resonance for Tyros

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 637 Accesses

Abstract

This chapter describes the inverse electromagnetic problems in the ELF band. In a usual, direct problem, the fields are found for the particular source (or source distribution) in the Earth–ionosphere cavity with definite boundary conditions. Inverse problems exploit the observed electromagnetic fields as initial information and derive the temporal variations of the source intensity, the unknown source distribution, or propagation conditions. We already considered the prevalent inverse problem in Chap. 5. We also treated the inverse problem linked to an ELF transient in Chap. 9. Here, we concentrate on obtaining accurate temporal and spatial properties of lightning sources responsible for the background signal. Initially, we discuss the shortcomings of traditional measurements of the source dynamics and apply a more progressive technique that separates the universal and local time factors involved in the SR records. For this purpose, we use the simultaneous records at three widely separated points. This allowed us to obtain estimates of the diurnal-seasonal variations of the global thunderstorm intensity on the three-year span. The simultaneously obtained local time factors characterize the movement of sources around the globe. The formally rigorous approach is addressed then, which exploits the Tikhonov technique of tomographic reconstruction. Monitoring data of three globally allocated SR observatories are used as the distance projections, and relevant space–time source distributions are obtained. Details of this procedure are discussed, and the output data are compared with the optical observations from space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando Y, Hayakawa M, Shvets AV, Nickolaenko AP (2005a) Finite difference analyses of Schumann resonance and reconstruction of lightning distribution. Radio Sci 40(2). doi:10.1029/2004RS003153

  • Ando Y, Maltsev P, Sukhynyuk A, Goto T, Yamauchi T, Hobara Y, Sekiguchi M, Ikegami Y, Sera M, Korepanov V, Hayakawa M (2005b) New ELF observation system at Moshiri, Japan and assessment of acquired data. J Atmos Electr 25(1):29–39

    Google Scholar 

  • Ando Y, Hayakawa M (2007) Use of generalized cross validation for identification of global lightning distribution by using Schumann resonance. Radio Sci 42(2). doi:10.1029/2006RS003481

  • Belyaev GG, Schekotov AYu, Shvets AV, Nickolaenko AP (1999) Schumann resonances observed using Poynting vector spectra. J Atmos Solar-Terr Phys 61:751–763

    Article  Google Scholar 

  • Betz HD, Schmidt K, Ottinger WP (2009) LINET-An international VLF/LF lightning detection network. In: Betz HD, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Dordrecht, pp 115–140

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108(D1):4005. doi:10.1029/2002JD002347

    Google Scholar 

  • Dowden RL, Brundell JB, Rodger CJ (2002) VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar-Terr Phys 64:817–830

    Article  Google Scholar 

  • Dowden RL, Holzworth RH, Rodger CJ, Lichtenberger J, Thomson NR, Jacobson AR, Lay E, Brundell JB, Lyons TJ, O’Keefe S, Kawasaki Z, Price C, Prior V, Ortega P, Weinman J, Mikhailov Y, Woodman R, Qie X, Burns G, Collier A, Pinto Junior O, Diaz R, Adamo C, Williams ER, Kumar S, Raga GB, Rosado JM, Avila EE, Clilverd MA, Ulich T, Gorham P, Shanahan TJG, Osipowicz T, Cook G, Zhao Y (2008) World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. Radio Sci Bull 327:39–53

    Google Scholar 

  • Fraser-Smith AC, McGill PR, Bernardi A, Helliwell RA, Ladd ME (1991) Global measurements of the low frequency radio noise. In: Kikuchi H (ed) Environmental and space electromagnetics. Springer, Tokyo, pp 191–200

    Chapter  Google Scholar 

  • Füllekrug M, Fraser-Smith AC (1997) Global lightning and climate variability inferred from ELF magnetic field observations. Geophys Res Lett 24:2411–2414

    Article  Google Scholar 

  • Füllekrug M, Constable S (2000) Global triangulation of lightning discharges. Geophys Res Lett 27:333–336

    Article  Google Scholar 

  • Hayakawa M (2009) A review on direction finding of VLF/LF sferics. J Atmos Electr 29(1):35–52

    Google Scholar 

  • Heckman SJ, Williams ER, Boldi R (1998) Total global lightning inferred from Schumann resonance measurements. J Geophys Res 103(31):31775–31779

    Article  Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Tsuchiya N, Williams ER, Sera M, Ikegami Y, Hayakawa M (2000) New ELF observation site in Moshiri, Hokkaido Japan and the results of preliminary data analysis. J Atmos Electr 20(2):99–109

    Google Scholar 

  • Hobara Y, Hayakawa M, Williams E, Boldi R, Downes E (2006) Location and electrical properties of sprite producing lightning from a single ELF site. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, elves and intense lightning discharges. Springer, Dordrecht, pp 211–235

    Chapter  Google Scholar 

  • Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C(1999) Criteria for sprites and elves based on Schumann resonance observations. J Geophys Res 104:16943–16964

    Google Scholar 

  • Ishaq M, Jones DLl (1977) Method of obtaining radiowave propagation parameters for the Earth-ionosphere duct at ELF. Electronic Lett 13:254–255

    Article  Google Scholar 

  • Iwai A, Ohtsu J, Nishino M, Kashiwagi M (1969) A new direction finding network for locating the sources of atmospherics. Proc Res Inst Atmospherics Nagoya University 16:17–20

    Google Scholar 

  • Iwai A, Kashiwagi M, Nishino M, Satoh M (1979) Triangulation direction finding network for fixing sources of atmospherics. Proc Res Inst Atmospherics Nagoya University 26:1–16

    Google Scholar 

  • Jones D Ll (1969) The apparent resonance frequencies of the Earth-ionosphere cavity when excited by a single dipole source. J Geomagn Geoelectr 21:679–684

    Article  Google Scholar 

  • Jones D Ll (1970a) Numerical computations of terrestrial ELF electromagnetic wave fields in the frequency domain. Radio Sci. 5:803–809

    Article  Google Scholar 

  • Jones DL (1970b) Propagation of ELF pulses in the Earth-ionosphere cavity and application to slow tail sferics. Radio Sci 5:1153–1163

    Google Scholar 

  • Korovkin NV, Chechurin VL, Hayakawa M (2007) Inverse problems in electric circuits and electromagnetics. Springer, Berlin, p 331

    Google Scholar 

  • Krider EP, Noggle RC, Uman MA (1976) A gated, wideband magnetic direction finder for locating return strokes. J. Appl. Meteor. 15:301–306

    Article  Google Scholar 

  • Lawson C, Hanson LRJ (1974) Solving least squares problems, Chap. 23. Prentice Hall, New Jersey

    Google Scholar 

  • Lee ACL (1986) An experimental study of the remote location of lightning flashes using a VLF arrival time difference technique. Q J Roy Meteor Soc 112:203–229

    Article  Google Scholar 

  • Nickolaenko AP (1997) Modern aspects of the Schumann resonance studies. J Atmos Solar-Terr Phys 59(7):805–816

    Article  Google Scholar 

  • Nickolaenko AP, Sátori G, Zieger B, Rabinowicz LM, Kudintseva IG (1998) Parameters of global thunderstorm activity deduced from long term Schumann resonance records. J Atmos Solar-Terr Phys 60:387–399

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity. Kluwer Academic Publishers, Dordrecht-Boston-London, p 380

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2007) Diurnal variations in Schumann resonance intensity in the local and universal times. J Atmos Electr 27(2):83–93

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2010) Model disturbance of Schumann resonance by the SGR 1806-20 γ-ray flare on December 27, 2004. J Atmos Electr 30(1):1–11

    Google Scholar 

  • Nickolaenko AP, Yatsevich EI, Pechony OB (2008) Diurnal and seasonal variations in the intensities and peak frequencies of the first three Schumann-resonance modes. Radiophys Quantum Electron 51(7):528

    Article  Google Scholar 

  • Nickolaenko AP, Yatsevich EI, Shvets AV, Hayakawa M, Hobara Y (2011a) Schumann-resonance records at three observatories and ELF universal- and local-time variations. Radiophys Quantum Electron 53(12):706–716. doi:10.1007/s11141-011-9263-y

    Article  Google Scholar 

  • Nickolaenko AP, Yatsevich EI, Shvets AV, Hayakawa M, Hobara Y (2011) Universal and local time variations deduced from simultaneous Schumann resonance records at three widely separated observatories. Radio Sci 46:RS5003. doi:10.1029/2011RS004663

  • Pechony O, Price C (2007) Schumann resonances: interpretation of local diurnal intensity modulations. Radio Sci 42(2). doi:10.1029/2006RS003455

  • Pechony O (2007) Modeling and Simulations of Schumann resonance parameters observed at the Mitzpe Ramon field station (Study of the day-night asymmetry influence on Schumann resonance amplitude records), Ph.D. Thesis, Tel-Aviv University, Israel, March 2007, p 92

    Google Scholar 

  • Pechony O, Price C, Nickolaenko AP (2007) Relative importance of the day-night asymmetry in Schumann resonance amplitude records. Radio Sci 42(2):RS02–RS06. doi:10.1029/2006RS003456

    Article  Google Scholar 

  • Pinto O Jr, Pinto IRCA, Saba MMM, Naccarato KP (2009) Cloud-to-ground lightning observations in Brazil. In: Betz HD, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Dordrecht, pp 209–229

    Google Scholar 

  • Polk C (1969) Relation of ELF noise and Schumann resonances to thunderstorm activity. In: Coronoti SC, Hughes J (eds) Planetary electrodynamics, vol 2. Gordon and Breach, New York, pp 55–83

    Google Scholar 

  • Sátori G (2003) On the dynamics of the north—south seasonal migration of global lightning. Proceeding of the 12th international conference on atmospheric electricity. Versailles, France, pp 1–4

    Google Scholar 

  • Sátori G, Williams ER, Boccippio DJ (2003) On the dynamics of the north—south seasonal migration of global lightning. AGU fall meeting, San Francisco, 8–12 Dec 2003. P. AE32A-0166

    Google Scholar 

  • Sátori G, Williams E, Lemperger I (2008) Variability of global lightning activity on the ENSO time scale. Atmos Res. doi:10.1016/j.atmosres.2008.06.014

    Google Scholar 

  • Sentman DD, Fraser BJ (1991) Simultaneous observation of Schumann resonances in California and Australia: evidence for intensity modulation by local height of D region. J Geophys Res 96(9):15973–15984

    Article  Google Scholar 

  • Shvets AV (2001) A technique for reconstruction of global lightning distance profile from background Schumann resonance signal. J Atmos Solar-Terr Phys 63(10):1061–1074

    Article  Google Scholar 

  • Shvets AV, Hayakawa M, Sekiguchi M, Ando Y (2009) Reconstruction of the global lightning distribution from ELF electromagnetic background signals. J Atmos Solar-Terr Phys 71:1405–1412

    Article  Google Scholar 

  • Shvets AV, Hobara Y, Hayakawa M (2010) Variations of the global lightning distribution revealed from three station Schumann resonance measurements. J Geophys Res 115:A12316. doi:10.1029/2010JA015851

    Article  Google Scholar 

  • Shvets A, Hayakawa M (2011) Global lightning activity on the basis of inversions of natural ELF electromagnetic data observed at multiple stations around the world. Surv Geophys 32:705–732. doi:10.1007/s10712-011-9135-1

    Article  Google Scholar 

  • Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4:1035–1038. English translation of Dokl. Akad Nauk SSSR 151:501–504

    Google Scholar 

  • Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Wiley, New York

    Google Scholar 

  • Troyan V, Hayakawa M (2002) Inverse geophysical problems. Terrapub, Tokyo, p 289

    Google Scholar 

  • Yamashita K, Otsuyama T, Hobara Y, Sekiguchi M, Matsudo Y, Hayakawa M, Korepanov V (2009) Global distribution and characteristics of intense lightning discharges as deduced from ELF transients observed at Moshiri(Japan). J Atmos Electr 29(2):71–80

    Google Scholar 

  • Yatsevich EI, Nickolaenko AP, Shvets AV, Rabinowicz LM (2006) Two component source model of Schumann resonance signal. J Atmos Electr 26(1):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nickolaenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nickolaenko, A., Hayakawa, M. (2014). Inverse Problem of SR. In: Schumann Resonance for Tyros. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54358-9_10

Download citation

Publish with us

Policies and ethics