Skip to main content

Introduction

Essentials of Global Electromagnetic Resonance in the Earth-Ionosphere Cavity

  • Chapter
  • First Online:
Schumann Resonance for Tyros

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

In this introductory chapter we describe general properties of the Earth–ionosphere cavity, outline the relationship of the global electromagnetic resonance to other natural low frequency radio signals, briefly describe the early history, and mention essentials of the signal measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert Ya L (1990) Space plasma, vols 1 and 2, Cambridge University Press, Cambridge-New York-Melbourne-Sydney

    Google Scholar 

  • Balser M, Wagner CA (1960) Observation of Earth-ionosphere cavity resonances. Nature 188:638–641

    Article  Google Scholar 

  • Balser M, Wagner CA (1962a) Diurnal power variations of the Earth-ionosphere cavity modes and their relationship to worldwide thunderstorm activity. J Geophys Res 67:619–625

    Article  Google Scholar 

  • Balser M, Wagner CA (1962b) On frequency variations of the Earth-ionosphere cavity modes, J Geophys Res, 67(4):081–4083

    Google Scholar 

  • Belyaev PP, Polyakov SV, Rapoport VO, Trakhtengertz VY (1987) Discovery of the resonance spectrum structure of atmospheric electromagnetic noise background in the range of short-period geomagnetic pulsations. Dokl Akad Nauk SSSR 297:840–846

    Google Scholar 

  • Belyaev PP, Polyakov SV, Rapoport VO, Trakhtengertz VY (1989) Experimental investigations of resonance structure in the spectrum of atmospheric electromagnetic noise in the band of short-period geomagnetic pulsations. Izvestiya VUZov, Radiofizika 32(6):663–672 (in Russian)

    Google Scholar 

  • Belyaev PP, Polyakov SV, Rapoport VO, Trakhtengertz VYu (1990) The ionospheric Alfvén resonator. J Atmos Terr Phys 52:781–788

    Article  Google Scholar 

  • Belyaev PP, Bösinger T, Isaev SV, Kangas J (1999a) First evidence at high latitudes for the ionospheric Alfvén resonator. J Geophys Res 104(4):305–317

    Google Scholar 

  • Belyaev GG, Schekotov AYu, Shvets AV, Nickolaenko AP (1999b) Schumann resonances observed using Poynting vector spectra. J Atmos Solar-Terr Phys 61:751–763

    Article  Google Scholar 

  • Besser BP (2007) Synopsis of the historical development of Schumann resonances, Radio Sci, 42, RS2S02, doi:10.1029/2006RS003495

  • Blackman RB, Tukey JW (1958) The measurement of power spectra. Dover Publications, New York

    Google Scholar 

  • Bliokh PV, Nickolaenko AP (1986) Global electromagnetic resonances, Priroda (Nature), 4: 3–15, (in Russian)

    Google Scholar 

  • Boccippio DJ, Williams ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites, ELF transients and positive ground strokes. Science, 269: 1088–1091

    Google Scholar 

  • Chern JL, Hsu RR, Su HT, Mende SB, Fukunishi H, Takahashi Y, Lee LC (2003) Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite. J Atmos Solar-Terr Phys 65:647–659. doi:10.1016/S1364-6826(02)00317-6

    Article  Google Scholar 

  • Egeland A, Larsen TR (1968) Fine structure of the Earth-ionosphere cavity resonances. J Geophys Res 73:4986–4989

    Article  Google Scholar 

  • IEEE Trans, Com-22, No.4 (1974) Special issue of the ‘Sanguine’ project

    Google Scholar 

  • Füllekrug M, Fraser-Smith AC, Reising SC (1998) Ultra-slow tails of sprite associated lightning flashes, Geophys Res Lett, 25(3): 495–3498

    Google Scholar 

  • Füllekrug M, Reising SC (1998) Excitations of Earth-ionosphere cavity resonances by sprite-associated lightning flashes, Geophys Res Lett, 25(4): 145–4,148

    Google Scholar 

  • Füllekrug M, Mareev EA, Rycroft MJ (eds) (2006) Sprites, Elves and Intense Lightning Discharges. NATO Science Series, Springer, Dordrecht

    Google Scholar 

  • Greenberg E, Price (2007) Diurnal variations of ELF transients and background noise in the Schumann resonance band, Radio Sci, 42, RS2S08, doi:10.1029/2006RS003477

  • Hayakawa M, Fujinawa Y (eds) (1994) Electromagnetic phenomena related to earthquake prediction, TERRAPUB, Tokyo, p 677

    Google Scholar 

  • Hayakawa M (ed) (1999) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, TERRAPUB, Tokyo, p 996

    Google Scholar 

  • Hayakawa M, Molchanov OA (eds) (2002) Seismo electromagnetics; lithosphere—atmosphere—ionosphere coupling, TERRAPUB, Tokyo, 477

    Google Scholar 

  • Hayakawa M, Nickolaenko AP, Shvets AV, Hobara Y (2011) Recent studies of Schumann resonance and ELF transients, In: Wood MD (ed) Lightning: properties formation and types. Nova Science Publications, New York, 39–71

    Google Scholar 

  • Hayakawa M, Hobara Y, Suzuki T (2012) Lightning effects in the mesosphere and ionosphere. In: Cooray V (ed) Lightning electromagnetics. Institute of Engineering and Technology, UK, pp 611–646

    Chapter  Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Hayakawa M, Ohta K, Fukunishi H (2001) Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. Geophys Res Lett 28:935–938

    Article  Google Scholar 

  • Hobara Y et al (2006), Location and electrical properties of sprite-producing lightning from a single ELF site, in “Sprites, elves and intense lightning discharges”, NATO Sci Ser, Ser. II. V.225. In:Füllekrug M, Mareev EA, Rycroft MJ (eds), p 211–235, Springer, Dordrecht, Netherlands

    Google Scholar 

  • Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations, J Geophys Res, 104:16943–16964

    Google Scholar 

  • Jones D Ll, Kemp DT (1971) The nature and average magnitude of the sources of transient excitation of Schumann resonances. J Atmos Terr Phys 33:557–566

    Article  Google Scholar 

  • Lazebny BV, Nickolaenko AP, Rafalsky VA, Shvets AV (1988) Detection of transverse resonances of the Earth-ionosphere cavity using average spectra of VLF atmospherics. Geomagnetism and Aeronomia 28:329–330 (in Russian)

    Google Scholar 

  • Marple SL Jr (1987) Digital spectral analyses with applications, Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Marshall IH, Hale LC, Croskey CL, Lyons WA (1998) Electromagnetics of sprite and elve-associated sferics. J Atmos Solar-Terr Phys 60:771–786

    Article  Google Scholar 

  • Molchanov OA, Hayakawa M (2008) Seismo electromagnetics and related phenomena: history and latest results. TERRAPUB, Tokyo 189

    Google Scholar 

  • Marshall RA, Inan US, Neubert T, Hughes A, Sátori G, Bor J, Collier A, Allin TH (2005) Optical observations geomagnetically conjugate to sprite-producing lightning discharges, Ann Geophys, 23 (6): 2231–2237

    Google Scholar 

  • Neska M, Sátori G (2006) Schumann resonance observation at Polish polar station at Spitzbergen and geophysical observatory in Belsk. Przeglad Geofizyczny 51(3–4):189–198 (in Polish)

    Google Scholar 

  • Neubert T, Allin TH, Blanc E, Farges T, Haldoupis C, Mika A, Soula S, Knutsson L, van der Velde O, Marshall RA, Inan U, Sátori G, Bor J, Hughes A, Collier A, Laursen S, Rasmussen IL (2005) Coordinated observations of transient luminous events during the Euro Sprite 2003 campaign. J Atmos Solar-Terr Phys 67:807–820. doi:10.1016/j.jastp.2005.02.004

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonance in the Earth-ionosphere Cavity. Kluwer Academic Publishers, Dordrecht, Boston, London, p 380

    Google Scholar 

  • Ohta K, Umeda K, Watanabe N, Hayakawa M (2002) Relationship between ELF magnetic fields and Taiwan earthquakes. In: Hayakawa M, Molchanov OA (eds) Seismo electromagnetics: lithosphere–atmosphere–ionosphere coupling. TERRAPUB, Tokyo, pp 233–237

    Google Scholar 

  • Pasko VP, Inan US, Bell TF, Reising SC (1998) Mechanism of ELF radiation from sprites. Geophys Res Lett 25:3493–3496

    Article  Google Scholar 

  • Polyakov SV (1976) On the properties of the ionospheric Alfvén resonator, KAPG Symposium on Solar-Terrestrial Physics, 3, Nauka, Moscow, pp 72–73

    Google Scholar 

  • Polyakov SV, Rapoport VO (1981) Ionospheric Alfvén Resonator. Geomag Aeronomy 21:816–822

    Google Scholar 

  • Price C, Asfur M, Lyons W, Nelson T (2002) An improved ELF/VLF method for globally geolocating sprite-produced lightning, Geophys Res Lett, 29 (3), doi: 10.1029/2001GL013519

  • Price C, Greenberg E, Yair Y, Sátori G, Bor J, Fukunishi H, Sato M, Israelevich P, Moalem M, Devir A, Levin Z, Joseph JH, Mayo I, Ziv B, Sternlieb A (2004) Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the space shuttle Columbia. Geophys Res Lett 31(20):L20107. doi:10.1029/2004GL020711

    Article  Google Scholar 

  • Price C, Pechony O, Greenberg E (2007) Schumann resonance Schumann resonance in lightning research. J Light Res 1:1–15

    Google Scholar 

  • Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37:317–336

    Article  Google Scholar 

  • Radio science (2007), 42(2), (special issue on Schumann resonance)

    Google Scholar 

  • Schumann WO (1952a) Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist, Zeitschrift und Naturfirschung, 7a: 149–154

    Google Scholar 

  • Schumann WO (1952b) Über die Dämpfung der elektromagnetischen Eigenschwingnugen des Systems Erde—Luft—Ionosphäre, Zeitschrift und Naturfirschung, 7a: 250–252

    Google Scholar 

  • Schumann WO (1952c) Über die Ausbreitung sehr Langer elektriseher Wellen um die Signale des Blitzes, Nuovo Cimento, 9:1116–1138

    Google Scholar 

  • Schumann WO, König H (1954) Über die Beobactung von Atmospherics bei geringsten Frequenzen. Naturwiss 41:183–184

    Article  Google Scholar 

  • Schumann WO (1957) Elektrische Eigenschwingnugen des Systems Erde—Luft—Ionosphäre. Z Angew Physik 9:373–378

    Google Scholar 

  • Sentman DD, Westcott EM (1993) Observations of upper atmosphere optical flashes recorded from an aircraft, Geophys Res Lett, 20, 2857–2860

    Google Scholar 

  • Sentman DD (1995) Schumann resonances. In: Volland H (ed) Handbook of atmospheric electrodynamics, 1: 267–298, CRC Press, Boca Raton, London, Tokyo

    Google Scholar 

  • Sukhorukov AI, Stubbe P (1997) On ELF pulses from remote lightning triggering sprites, Geophys Res Lett, 24(13): 1639–1642

    Google Scholar 

  • Sveshnikov AA (1968) Applied methods of the theory of random functions, Moscow, Nauka Publ, 463, §42

    Google Scholar 

  • Tesla N (1905) The transmission of electrical energy without wires as a means of furthering world peace. Electrical World and Engineer, January 7: 21–24

    Google Scholar 

  • Williams ER (1992) The Schumann resonance: a global tropical thermometer, Science, 256, 1184–1188

    Google Scholar 

  • Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev, 122:1917–1929

    Google Scholar 

  • Williams ER (2001) Sprites, elves, and glow discharge tubes. Phys Today 41:41–47

    Article  Google Scholar 

  • Yair Y, Price C, Levin Z, Joseph J, Israelevitch P, Devir A, Moalem M, Ziv B, Asfur M (2003) Sprite observations from the space shuttle during the Mediterranean Israeli dust experiment (MEIDEX). J Atmos Solar-Terr Phys 65:635–642. doi:10.1016/S1364-6826(02)00332-2

    Article  Google Scholar 

  • Yair Y, Price C, Ganot M, Greenberg E, Yaniv R, Ziv B, Sherez Y, Sátori G (2009) Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel. Atmos Res 91(2–4):529–537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nickolaenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nickolaenko, A., Hayakawa, M. (2014). Introduction. In: Schumann Resonance for Tyros. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54358-9_1

Download citation

Publish with us

Policies and ethics