Skip to main content

Assessment of Hemodynamics by Magnetic Resonance Imaging

  • Chapter
  • First Online:
  • 2212 Accesses

Abstract

In recent years, remarkable technological revolutions in cMRI methods have made it possible to better ascertain patients’ conditions. For example, cine MRI makes it possible to take moving images while the patient is holding their breath, has excellent time resolution, and easily and accurately evaluates cardiac function. Compared to echocardiography, it provides a superior visual overview of blood vessels and allows the user to freely obtain section images without the interference of bones, the lungs, and other structures. The use of phase contrast technique makes it possible to perform quantitative evaluation of shunt volume and all types of valvular regurgitation. An imaging technique that allows the imaging of myocardial strain has also been developed, which has further improved the ability of MRI to evaluate cardiac function and cardiac wall motion. When MRI contrast medium is used, MRI is superior to myocardial scintigraphy for the diagnosis of myocardial ischemia, myocardial infarction, and cardiomyopathy. Currently, cMRI is an essential tool for the evaluation of cardiac function in the field of pediatric cardiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Korperich H, Gieseke J, Barth P, Hoogeveen R, Esdorn H, Peterschroder A, Meyer H, Beerbaum P (2004) Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping: a validation study. Circulation 109(16):1987–1993

    Article  PubMed  Google Scholar 

  2. Hori Y, Yamada N, Higashi M, Hirai N, Nakatani S (2003) Rapid evaluation of right and left ventricular function and mass using real-time true-FISP cine MR imaging without breath-hold: comparison with segmented true-FISP cine MR imaging with breath-hold. J Cardiovasc Magn Reson 5(3):439–450

    Article  PubMed  Google Scholar 

  3. Fogel MA, Weinberg PM, Parave E, Harris C, Montenegro L, Harris MA, Concepcion M (2008) Deep sedation for cardiac magnetic resonance imaging: a comparison with cardiac anesthesia. J Pediatr 152(4):534–539

    Article  PubMed  Google Scholar 

  4. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90(1):29–34

    Article  PubMed  Google Scholar 

  5. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J (2007) Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 48(1):30–35

    Article  CAS  PubMed  Google Scholar 

  6. Ichikawa Y, Sakuma H, Kitagawa K, Ishida N, Takeda K, Uemura S, Motoyasu M, Nakano T, Nozaki A (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5(2):333–342

    Article  PubMed  Google Scholar 

  7. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223(3):789–797

    Article  PubMed  Google Scholar 

  8. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218(1):215–223

    Article  CAS  PubMed  Google Scholar 

  9. Just H, Holubarsch C, Friedburg H (1987) Estimation of left ventricular volume and mass by magnetic resonance imaging: comparison with quantitative biplane angiocardiography. Cardiovasc Intervent Radiol 10(1):1–4

    Article  CAS  PubMed  Google Scholar 

  10. Semelka RC, Tomei E, Wagner S, Mayo J, Kondo C, Suzuki J, Caputo GR, Higgins CB (1990) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174(3 Pt 1):763–768

    Article  CAS  PubMed  Google Scholar 

  11. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, Schmidt F, Galuschky C, Schummers G, Lang RM, Nesser HJ (2006) Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114(7):654–661

    Article  PubMed  Google Scholar 

  12. Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, Gerstad NA, Gillam LD, Hodgson JM, Kim RJ, Kramer CM, Lesser JR, Martin ET, Messer JV, Redberg RF, Rubin GD, Rumsfeld JS, Taylor AJ, Weigold WG, Woodard PK, Brindis RG, Hendel RC, Douglas PS, Peterson ED, Wolk MJ, Allen JM, Patel MR (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48(7):1475–1497. doi:10.1016/j.jacc.2006.07.003

    Article  PubMed  Google Scholar 

  13. Fritz J, Solaiyappan M, Tandri H, Bomma C, Genc A, Claussen CD, Lima JA, Bluemke DA (2005) Right ventricle shape and contraction patterns and relation to magnetic resonance imaging findings. J Comput Assist Tomogr 29(6):725–733

    Article  PubMed  Google Scholar 

  14. Geva T (2011) Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson 13:9. doi:10.1186/1532-429x-13-9

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schmitt B, Steendijk P, Ovroutski S, Lunze K, Rahmanzadeh P, Maarouf N, Ewert P, Berger F, Kuehne T (2010) Pulmonary vascular resistance, collateral flow, and ventricular function in patients with a Fontan circulation at rest and during dobutamine stress. Circ Cardiovasc Imaging 3(5):623–631

    Article  PubMed  Google Scholar 

  16. Hager A, Fratz S, Schwaiger M, Lange R, Hess J, Stern H (2008) Pulmonary blood flow patterns in patients with Fontan circulation. Ann Thorac Surg 85(1):186–191

    Article  PubMed  Google Scholar 

  17. Whitehead KK, Sundareswaran KS, Parks WJ, Harris MA, Yoganathan AP, Fogel MA (2009) Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg 138(1):96–102

    Article  PubMed Central  PubMed  Google Scholar 

  18. Caputo GR, Kondo C, Masui T, Geraci SJ, Foster E, O’Sullivan MM, Higgins CB (1991) Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology 180(3):693–698

    Article  CAS  PubMed  Google Scholar 

  19. Kuehne T, Yilmaz S, Schulze-Neick I, Wellnhofer E, Ewert P, Nagel E, Lange P (2005) Magnetic resonance imaging guided catheterisation for assessment of pulmonary vascular resistance: in vivo validation and clinical application in patients with pulmonary hypertension. Heart 91(8):1064–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Osada H, Machida K, Honda N (2002) Quantification of regional pulmonary flow with 9mTc-MAA SPECT and cine phase contrast MR imaging. Ann Nucl Med 16(6):423–429

    Article  PubMed  Google Scholar 

  21. Ordovas KG, Tan C, Reddy GP, Weber OM, Lu Y, Higgins CB (2007) Disparity between ratios of diameters and blood flows in central pulmonary arteries in postoperative congenital heart disease using MRI. J Magn Reson Imaging 25(4):721–726

    Article  PubMed  Google Scholar 

  22. Fratz S, Hess J, Schwaiger M, Martinoff S, Stern HC (2002) More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation 106(12):1510–1513

    Article  PubMed  Google Scholar 

  23. Brenner LD, Caputo GR, Mostbeck G, Steiman D, Dulce M, Cheitlin MD, O’Sullivan M, Higgins CB (1992) Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 20(5):1246–1250

    Article  CAS  PubMed  Google Scholar 

  24. Petersen SE, Voigtlander T, Kreitner KF, Kalden P, Wittlinger T, Scharhag J, Horstick G, Becker D, Hommel G, Thelen M, Meyer J (2002) Quantification of shunt volumes in congenital heart diseases using a breath-hold MR phase contrast technique–comparison with oximetry. Int J Cardiovasc Imaging 18(1):53–60

    Article  PubMed  Google Scholar 

  25. Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103(20):2476–2482

    Article  CAS  PubMed  Google Scholar 

  26. Sugimoto M, Kajino H, Kajihama A, Nakau K, Murakami N, Azuma H (2013) Assessment of pulmonary arterial pressure by velocity-encoded cine magnetic resonance imaging in children with congenital heart disease. Circ J 77(12):3015–3022

    Article  PubMed  Google Scholar 

  27. Sechtem U, Pflugfelder PW, Cassidy MM, White RD, Cheitlin MD, Schiller NB, Higgins CB (1988) Mitral or aortic regurgitation: quantification of regurgitant volumes with cine MR imaging. Radiology 167(2):425–430

    Article  CAS  PubMed  Google Scholar 

  28. Didier D, Ratib O, Lerch R, Friedli B (2000) Detection and quantification of valvular heart disease with dynamic cardiac MR imaging. Radiographics 20(5):1279–1299; discussion 1299-1301

    Article  CAS  PubMed  Google Scholar 

  29. Bolen MA, Popovic ZB, Rajiah P, Gabriel RS, Zurick AO, Lieber ML, Flamm SD (2011) Cardiac MR assessment of aortic regurgitation: holodiastolic flow reversal in the descending aorta helps stratify severity. Radiology 260(1):98–104

    Article  PubMed  Google Scholar 

  30. Tulevski II, Hirsch A, Dodge-Khatami A, Stoker J, van der Wall EE, Mulder BJ (2003) Effect of pulmonary valve regurgitation on right ventricular function in patients with chronic right ventricular pressure overload. Am J Cardiol 92(1):113–116

    Article  PubMed  Google Scholar 

  31. Harris MA, Weinberg PM, Whitehead KK, Fogel MA (2005) Usefulness of branch pulmonary artery regurgitant fraction to estimate the relative right and left pulmonary vascular resistances in congenital heart disease. Am J Cardiol 95(12):1514–1517

    Article  PubMed  Google Scholar 

  32. Puranik R, Muthurangu V, Celermajer DS, Taylor AM (2010) Congenital heart disease and multi-modality imaging. Heart Lung Circ 19(3):133–144

    Article  PubMed  Google Scholar 

  33. Yap SC, van Geuns RJ, Meijboom FJ, Kirschbaum SW, McGhie JS, Simoons ML, Kilner PJ, Roos-Hesselink JW (2007) A simplified continuity equation approach to the quantification of stenotic bicuspid aortic valves using velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9(6):899–906

    Article  PubMed  Google Scholar 

  34. Steffens JC, Bourne MW, Sakuma H, O’Sullivan M, Higgins CB (1994) Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation 90(2):937–943

    Article  CAS  PubMed  Google Scholar 

  35. Riehle TJ, Oshinski JN, Brummer ME, Favaloro-Sabatier J, Mahle WT, Fyfe DA, Kanter KR, Parks WJ (2006) Velocity-encoded magnetic resonance image assessment of regional aortic flow in coarctation patients. Ann Thorac Surg 81(3):1002–1007, doi: S0003-4975(05)01189-6 [pii] 10.1016/j.athoracsur.2005.07.002 [doi]

    Article  PubMed  Google Scholar 

  36. Laffon E, Vallet C, Bernard V, Montaudon M, Ducassou D, Laurent F, Marthan R (2004) A computed method for noninvasive MRI assessment of pulmonary arterial hypertension. J Appl Physiol 96(2):463–468

    Article  PubMed  Google Scholar 

  37. Mousseaux E, Tasu JP, Jolivet O, Simonneau G, Bittoun J, Gaux JC (1999) Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging–preliminary experience. Radiology 212(3):896–902

    Article  CAS  PubMed  Google Scholar 

  38. Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Varlamis G, Karanasios E, Krikos X, Giannoulia A, Cokkinos DV (2006) Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson 8(3):493–498

    Article  PubMed  Google Scholar 

  39. Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, Biller L, Lesser JR, Udelson JE, Manning WJ, Appelbaum E (2009) Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 54(3):220–228

    Article  PubMed  Google Scholar 

  40. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985

    Article  PubMed  Google Scholar 

  41. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, Petrou M, Pennell DJ (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43(12):2260–2264

    Article  PubMed  Google Scholar 

  42. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, Lesser JR, Hanna CA, Udelson JE, Manning WJ, Maron MS (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51(14):1369–1374

    Article  PubMed  Google Scholar 

  43. Hartke LP, Gilkeson RC, O’Riordan MA, Siwik ES (2006) Evaluation of right ventricular fibrosis in adult congenital heart disease using gadolinium-enhanced magnetic resonance imaging: initial experience in patients with right ventricular loading conditions. Congenit Heart Dis 1(5):192–201

    Article  PubMed  Google Scholar 

  44. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361(9355):374–379

    Article  PubMed  Google Scholar 

  45. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63

    Article  CAS  PubMed  Google Scholar 

  46. Sigfridsson A, Haraldsson H, Ebbers T, Knutsson H, Sakuma H (2010) Single-breath-hold multiple-slice DENSE MRI. Magn Reson Med 63(5):1411–1414

    Article  PubMed  Google Scholar 

  47. Fogel MA (2000) Assessment of cardiac function by magnetic resonance imaging. Pediatr Cardiol 21(1):59–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Sugimoto MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Sugimoto, M. (2015). Assessment of Hemodynamics by Magnetic Resonance Imaging. In: Senzaki, H., Yasukochi, S. (eds) Congenital Heart Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54355-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54355-8_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54354-1

  • Online ISBN: 978-4-431-54355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics