Skip to main content

Impedance Control and Its Adaptive for Hexapod Robot

  • Chapter
  • First Online:
Hydraulically Actuated Hexapod Robots

Abstract

Impedance control should be generally applied for most robot when contacts some environment to achieve “softness of contact” between the end-effector of robot and the environment. This chapter proposes several algorithms such as impedance control implementation for hexapod robot COMET-IV. Also, in the case of heavyweight and large-scale-structured robot, inclinometers from attitude angles should be designed to control the long-term attitudes of the body, not to prevent shaking caused by changes in support of the legs. Moreover, this shaking is considered as a natural scenario since the robot is using hydraulic system and automotive engine. Therefore, only attitude errors that are over the acceptable limit will be included in the adaptive calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palis F, Rusin V (2004) Adaptive impedance control of legged robot. Paper presented at the proceeding of 11th international conference on power electronics and motion control, Riga

    Google Scholar 

  2. Erickson D, Weber M, Sharf I (2003) Contact stiffness and damping estimation for robotic systems. Int J Robotics Res 22(1)

    Google Scholar 

  3. Lehtinen H (1994) Force based motion control of a walking machine. VTT Publication, Espoo

    Google Scholar 

  4. Irawan A, Nonami K (2011) Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain. J Field Robotics 28(5):690–713

    Article  MATH  Google Scholar 

  5. Futagami K, Harada Y, Oku M, Ohroku H, Lin X, Okawa K, Sakai S, Nonami K (2008) Real-time navigation and control of hydraulically actuated hexapod robot COMET-IV. In: Proceeding of the 9th international conference on motion and vibration control 2008 (MOVIC 2008), Munich, 2008

    Google Scholar 

  6. Ohroku H, Futagami K, Harada Y, Oku M, Nonami K (2008) Tele-operation and navigation of hexapod robot COMET-IV with real-time gait and trajectory planning. In: 9th international conference on motion and vibration control 2008 (MOVIC 2008), Munich, 2008

    Google Scholar 

  7. Oku M, Koseki H, Ohroku H, Harada Y, Futagami K, Tran DC, Li L, Lin X, Sakai S, Nonami K (2008) Rough terrain locomotion control of hydraulically actuated hexapod robot COMET-IV (in Japanese). In: JSME conference on robotics and mechatronics 2008 (ROBOMEC 2008), Nagano, 2008

    Google Scholar 

  8. Hespanha JP (2005) Lecture notes on LQR/LQG controller design

    Google Scholar 

  9. Terashima K, Miyoshi T, Mouri K, Kitagawa H, Minyong P (2009) Hybrid impedance control of massage considering dynamic interaction of human and robot collaboration systems. J Robotics Mechatronics 21(1)

    Google Scholar 

  10. Jung S, Hsia TC, Bonitz RG (2001) Force tracking impedance control for robot manipulators with an unknown environment: theory, simulation, and experiment. Int J Robotics Res 20(9):765–774

    Article  Google Scholar 

  11. Kikuuwe R, Yoshikawa T (2002) Robot perception of environment impedance. In: Proceeding of IEEE international conference of robotics and automation 2002 (ICRA 2002), Kyoto, pp 1661–1666

    Google Scholar 

  12. Barai R, Nonami K (2007) Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot. Info Sci Appl 117(8):1892–1915

    Article  Google Scholar 

  13. Irawan A, Nonami K, Ohroku H, Akutsu Y, Imamura S (2011) Adaptive impedance control with compliant body balance for hydraulically driven hexapod robot. J Syst Des Dyn 5(5):893–908, Special issue of motion and vibration control 2010

    Google Scholar 

  14. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybernatics 15(1):116–132

    Article  MATH  Google Scholar 

  15. Cox E, O'Hagan M (1999) The fuzzy systems handbook: a practitioner's guide to building, using, and maintaining fuzzy systems, 2nd edn. Academic, Cambridge

    Google Scholar 

  16. Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Set Syst 28:15–33

    Article  MATH  MathSciNet  Google Scholar 

  17. Castillo O, Melin P (2008) Type-2 fuzzy logic theory and applications. Springer, Berlin

    MATH  Google Scholar 

  18. Vasickaninova A, Bakasova M (2010) Locally optimal fuzzy control of a heat exchanger. WSEAS Trans Syst 9(9):999–1008

    Google Scholar 

  19. Daud MR, Nonami K (2011) LRF assisted force-based walking for hexapod robot COMET-IV. Int J Automation Robotics Autonomous Syst (ARAS) 11(1):11–22

    Google Scholar 

  20. Daud MR, Nonami K, Irawan A (2011) LRF assisted autonomous walking in rough terrain for hexapod robot COMET-IV. In: Proceeding of the international conference on intelligent unmanned systems 2011 (ICIUS 2011), Chiba, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nonami, K., Barai, R.K., Irawan, A., Daud, M.R. (2014). Impedance Control and Its Adaptive for Hexapod Robot. In: Hydraulically Actuated Hexapod Robots. Intelligent Systems, Control and Automation: Science and Engineering, vol 66. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54349-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54349-7_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54348-0

  • Online ISBN: 978-4-431-54349-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics