Skip to main content

Monitoring Neural Activity with Genetically Encoded Ca2+ Indicators

  • Chapter
  • First Online:
Methods in Neuroethological Research

Abstract

Visualizing the activity of nerve cells using genetically encoded indicator proteins has emerged to a widely used technique in the field of neuroscience. In particular, intracellular Ca2+ dynamics represents a parameter that is closely correlated with neuronal excitation, and a variety of genetically encoded Ca2+ sensors have been developed. The fruit fly Drosophila melanogaster is an extremely useful model organism to use these indicators because of its sophisticated genetic tools to express an artificial genetic construct in a spatially and temporally controlled pattern within the nervous system. Binary expression systems, for which large amount of different fly strains exist, enable a targeted expression in selective neuronal populations. Advanced fluorescence microscopical visualization techniques (see Part 3) allow for real-time monitoring of neural activity patterns. In Drosophila, optical Ca2+ imaging has been used to analyze basic principles of neuronal coding and processing, e.g., olfactory coding, visual stimulus processing, taste perception, mechanosensation, or learning and memory. In this chapter, we will review how genetic targeting methods can be used in Drosophila to monitor neural Ca2+ activity in vivo in order to study how individual neurons or neuronal ensembles encode stimulus information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benzer S (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci USA 58:1112–1119

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Chiang AS, Lin CY, Chuang CC et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11

    Article  PubMed  CAS  Google Scholar 

  • Chiappe ME, Seelig JD, Reiser MB et al (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20:1470–1475

    Article  PubMed  CAS  Google Scholar 

  • Dankert H, Wang L, Hoopfer ED et al (2009) Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 6:297–303

    Article  PubMed  CAS  Google Scholar 

  • Diegelmann S, Fiala A, Leibold C et al (2002) Transgenic flies expressing the fluorescence calcium sensor Cameleon 2.1 under UAS control. Genesis 34:95–98

    Article  PubMed  CAS  Google Scholar 

  • Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  PubMed  CAS  Google Scholar 

  • Fiala A (2007) Olfaction and olfactory learning in Drosophila: recent progress. Curr Opin Neurobiol 17:720–726

    Article  PubMed  CAS  Google Scholar 

  • Fiala A, Spall T (2003) In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci STKE 2003:PL6

    Article  PubMed  Google Scholar 

  • Fiala A, Spall T, Diegelmann S et al (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    Article  PubMed  CAS  Google Scholar 

  • Fischer JA, Giniger E, Maniatis T et al (1988) GAL4 activates transcription in Drosophila. Nature 332:853–856

    Article  PubMed  CAS  Google Scholar 

  • Hasan MT, Friedrich RW, Euler T et al (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2:e163

    Article  PubMed  Google Scholar 

  • Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129

    PubMed  CAS  Google Scholar 

  • Hayashi S, Ito K, Sado Y et al (2002) GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34:58–61

    Article  PubMed  CAS  Google Scholar 

  • Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411

    Article  PubMed  CAS  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA et al (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    Article  PubMed  CAS  Google Scholar 

  • Higashijima S, Masino MA, Mandel G et al (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997

    Article  PubMed  Google Scholar 

  • Hoyer SC, Eckart A, Herrel A et al (2008) Octopamine in male aggression of Drosophila. Curr Biol 18:159–167

    Article  PubMed  CAS  Google Scholar 

  • Inagaki HK, de-Leon SB-T, Wong A et al (2012) Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148:583–595

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman V, Laurent G (2007) Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural Circuits 1:3

    Article  PubMed  Google Scholar 

  • Joesch M, Plett J, Borst A et al (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374

    Article  PubMed  CAS  Google Scholar 

  • Kamikouchi A, Ito K (2007) The fruit fly - in vivo imaging by using GAL4-enhancer trap method. In: Miwa Y (ed) How to chose and use the fluorescent reagents for a successful experiment. YODOSHA, Tokyo

    Google Scholar 

  • Kamikouchi A, Inagaki HK, Effertz T et al (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kamikouchi A, Wiek R, Effertz T et al (2010) Transcuticular optical imaging of stimulus-evoked neural activities in the Drosophila peripheral nervous system. Nat Protoc 5:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Kerr R, Lev-Ram V, Baird G et al (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26:583–594

    Article  PubMed  CAS  Google Scholar 

  • Kohatsu S, Koganezawa M, Yamamoto D (2011) Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69:498–508

    Article  PubMed  CAS  Google Scholar 

  • Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  • Luan H, Peabody NC, Vinson CR et al (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436

    Article  PubMed  CAS  Google Scholar 

  • Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Rogers KL, Chagneau C et al (2007) In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS One 2:e275

    Article  PubMed  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R et al (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  • Muto A, Ohkura M, Kotani T et al (2011) Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proc Natl Acad Sci USA 108:5425–5430

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  PubMed  CAS  Google Scholar 

  • Nern A, Pfeiffer BD, Svoboda K et al (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci USA 108:14198–14203

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Roorda RD, Lima SQ et al (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Moreadith RW, Leder P (1991) Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc Natl Acad Sci USA 88:698–702

    Article  PubMed  CAS  Google Scholar 

  • Palmer AE, Giacomello M, Kortemme T et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  • Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Pelz D, Roeske T, Syed Z et al (2006) The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). J Neurobiol 66:1544–1563

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 105:9715–9720

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer BD, Ngo TT, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755

    Article  PubMed  CAS  Google Scholar 

  • Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    Article  PubMed  CAS  Google Scholar 

  • Reiff DF, Ihring A, Guerrero G et al (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778

    Article  PubMed  CAS  Google Scholar 

  • Scheer N, Campos-Ortega JA (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80:153–158

    Article  PubMed  CAS  Google Scholar 

  • Seelig JD, Chiappe ME, Lott GK et al (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540

    Article  PubMed  CAS  Google Scholar 

  • Shang Y, Haynes P, Pirez N et al (2011) Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 14:889–895

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Kato K, Kamikouchi A et al (2005) Analysis of the distribution of the brain cells of fruit fly by an automatic cell counting algorithm. Physica A Stat Phys 350:144–149

    Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  • Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  PubMed  CAS  Google Scholar 

  • von Philipsborn AC, Liu T, Yu JY et al (2011) Neuronal control of Drosophila courtship song. Neuron 69:509–522

    Article  Google Scholar 

  • Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wong AM, Flores J et al (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  PubMed  CAS  Google Scholar 

  • Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589

    Article  PubMed  CAS  Google Scholar 

  • Yao KM, White K (1994) Neural specificity of elav expression: defining a Drosophila promoter for directing expression to the nervous system. J Neurochem 63:41–51

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azusa Kamikouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Kamikouchi, A., Fiala, A. (2013). Monitoring Neural Activity with Genetically Encoded Ca2+ Indicators. In: Ogawa, H., Oka, K. (eds) Methods in Neuroethological Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54331-2_7

Download citation

Publish with us

Policies and ethics