Skip to main content

Classical Conditioning of the Proboscis Extension Reflex in the Honeybee

  • Chapter
  • First Online:

Abstract

Insects have sophisticated learning abilities subtended by simple neural systems and lower numbers of neurons compared to vertebrates. Especially, honeybees (Apis mellifera) are reported to have the highest and broad range of learning abilities. In this chapter, we introduce a classic behavioral tool for the study of olfactory learning and memory in bees, the olfactory classical conditioning of the proboscis extension reflex (PER). In this protocol, individually harnessed honeybees are trained to associate an odor with sucrose solution. The resulting olfactory learning is fast and induces robust olfactory memories that have been characterized at the behavioral, neuronal, and molecular levels. We detail step-by-step the methodology of olfactory PER conditioning in order to provide a standardized framework for experiments using this tool. We also review research highlights revealed by olfactory conditioning of PER and variations of this procedure applied in the case of honeybees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383

    PubMed  CAS  Google Scholar 

  • Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    PubMed  Google Scholar 

  • Ayestaran A, Giurfa M, de Bitro Sanchez MG (2010) Toxic but drank: gustatory aversive compounds induce post-ingestional malaise in harnessed honeybees. PLoS One 5:e15000. doi:10.1371/journal.pone.0015000

    PubMed  Google Scholar 

  • Balderrama N (1980) One trial learning in the American cockroach, Periplaneta americana. J Insect Physiol 26:499–504

    Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    PubMed  CAS  Google Scholar 

  • Daly KC, Smith BH (2000) Associative olfactory learning in the moth Manduca sexta. J Exp Biol 203:2025–2038

    PubMed  CAS  Google Scholar 

  • de Brito Sanchez MG, Giurfa M, de Paula Mota TR, Gauthier M (2005) Electrophysiological and behavioural characterization of gustatory responses to antennal ‘bitter’ taste in honeybees. Eur J Neurosci 22:3161–3170

    PubMed  Google Scholar 

  • de Brito Sanchez MG, Chen C, Li J, Liu F, Gauthier M, Giurfa M (2008) Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J Comp Physiol A 194:861–869

    CAS  Google Scholar 

  • Denker M, Finke R, Schaupp F, Grün S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31:119–133

    PubMed  Google Scholar 

  • Devaud JM, Blunk A, Podufall J, Giurfa M, Grünewald B (2007) Using local anaesthetics to block neuronal activity and map specific learning tasks to the mushroom bodies of an insect brain. Eur J Neurosci 26:3193–3206

    PubMed  Google Scholar 

  • Deisig N, Lachnit H, Hellstern F, Giurfa M (2001) Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn Mem 8:70–78

    PubMed  CAS  Google Scholar 

  • Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9:112–121

    PubMed  Google Scholar 

  • Deisig N, Lachnit H, Sandoz JC, Lober K, Giurfa M (2003) A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn Mem 10:199–208

    PubMed  Google Scholar 

  • Dupuy F, Sandoz JC, Giurfa M, Josens R (2006) Individual olfactory learning in Camponotus ants. Anim Behav 72:1081–1091

    Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 5:343–358

    Google Scholar 

  • Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78

    PubMed  CAS  Google Scholar 

  • Farina WM, Núñez JA (1991) Trophallaxis in the honeybee, Apis mellifera(L) as related to the profitability of food sources. Anim Behav 42:389–394

    PubMed  CAS  Google Scholar 

  • Friedrich A, Thomas U, Müller U (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J Neurosci 24:4460–4468

    PubMed  CAS  Google Scholar 

  • Frings H (1944) The loci of olfactory end-organs in the honey-bee, Apis mellifera Linn. J Exp Zool 97:123–134

    CAS  Google Scholar 

  • Frings H, Frings M (1949) The loci of contact chemoreceptors in insects. A review with new evidence. Am Midl Nat 41:602–658

    Google Scholar 

  • Frost EH, Shutler D, Hillier NK (2011) Effects of cold immobilization and recovery period on honeybee learning, memory, and responsiveness to sucrose. J Insect Physiol 57:1385–1390

    PubMed  CAS  Google Scholar 

  • Galizia CG, Joerges J, Küttner A, Faber T, Menzel R (1997) A semi-in-vivo preparation for optical recording of the insect brain. J Neurosci Methods 76:61–69

    PubMed  CAS  Google Scholar 

  • Gauthier M, Dacher M, Thany SH, Niggebrugge C, Deglise P, Kljucevic P, Armengaud C, Grunewald B (2006) Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 86:164–174

    PubMed  CAS  Google Scholar 

  • Gerber B, Ullrich J (1999) No evidence for olfactory blocking in honeybee classical conditioning. J Exp Biol 202:1839–1854

    PubMed  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Google Scholar 

  • Giurfa M, Malun D (2004) Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn Mem 11:294–302

    PubMed  Google Scholar 

  • Giurfa M, Menzel R (1997) Insect visual perception: complex abilities of simple nervous systems. Curr Opin Neurobiol 7:505–513

    PubMed  CAS  Google Scholar 

  • Giurfa M, Lehrer M (2001) Honeybee vision and floral displays: from detection to close-up recognition. In: Chittka L, Thomson J (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 61–82

    Google Scholar 

  • Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66

    PubMed  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458–461

    PubMed  CAS  Google Scholar 

  • Giurfa M, Zhang S, Jennet A, Menzel R, Srinivasan MV (2001) The concepts of “sameness” and “difference” in an insect. Nature 410:930–933

    PubMed  CAS  Google Scholar 

  • Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 436:474–489

    Google Scholar 

  • Grünbaum L, Müller U (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J Neurosci 18:4384–4392

    PubMed  Google Scholar 

  • Grünewald B (1999) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee, Apis mellifera. J Comp Physiol A 185:565–576

    Google Scholar 

  • Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005a) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60. doi:10.1371/journal.pbio.0030060

    PubMed  Google Scholar 

  • Guerrieri F, Lachnit H, Gerber B, Giurfa M (2005b) Olfactory blocking and odorant similarity in the honeybee. Learn Mem 12:86–95

    PubMed  Google Scholar 

  • Hadar R, Menzel R (2010) Memory formation in reversal learning of the honeybee. Front Behav Neurosci 4:186. doi:10.3389/fnbeh.2010.00186

    PubMed  Google Scholar 

  • Haehnel M, Menzel R (2010) Sensory representation and learning-related plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract. Front Syst Neurosci 4:61. doi:10.3389/fnsys.2010.00161

    Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Google Scholar 

  • Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630

    PubMed  CAS  Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjection of octopamine in honeybees. Learn Mem 5:146–156

    PubMed  CAS  Google Scholar 

  • Hammer TJ, Hata C, Nieh JC (2009) Thermal learning in the honeybee, Apis mellifera. J Exp Biol 212:3928–3934

    PubMed  Google Scholar 

  • Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192:691–700

    Google Scholar 

  • Hori S, Takeuchi H, Kubo T (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. J Comp Physiol A 193:825–833

    Google Scholar 

  • Hosler JS, Smith BH (2000) Blocking and the detection of odor components in blends. J Exp Biol 203:2797–2806

    PubMed  CAS  Google Scholar 

  • Hourcade B, Muenz TS, Sandoz JC, Rößler W, Devaud JM (2010) Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 30:6461–6465

    PubMed  CAS  Google Scholar 

  • Hussaini SA, Komischke B, Menzel R, Lachnit H (2007) Forward and backward second-order Pavlovian conditioning in honeybees. Learn Mem 14:678–683

    PubMed  Google Scholar 

  • Komischke B, Giurfa M, Lachnit H, Malun D (2002) Successive olfactory reversal learning in honeybees. Learn Mem 9:122–129

    PubMed  Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Fac Sci Hokkaido Univ Ser VI Zool 13:458–464

    Google Scholar 

  • Lehrer M (1997) Honeybee’s visual orientation at the feeding site. In: Leher M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 115–144

    Google Scholar 

  • Lehmann M, Gystav D, Galizia CG (2011) The early bee catches the flower—circadian rhythmicity influences learning performance in honey bees, Apis mellifera. Behav Ecol Sociobiol 65:205–215

    PubMed  Google Scholar 

  • Locatelli F, Bundrock G, Müller U (2005) Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci 25:11614–11618

    PubMed  CAS  Google Scholar 

  • Lunney GH (1970) Using analysis of variance with a dichotomous dependent variable: an empirical study. J Educ Meas 7:263–269

    Google Scholar 

  • Maleszka R, Helliwell P, Kucharski R (2000) Pharmacological interference with glutamate re-uptake impairs long-term memory in the honeybee, Apis mellifera. Behav Brain Res 115:49–53

    PubMed  CAS  Google Scholar 

  • Matsumoto Y, Mizunami M (2000) Olfactory learning in the cricket Gryllus bimaculatus. J Exp Biol 203:2581–2588

    PubMed  CAS  Google Scholar 

  • Matsumoto Y, Mizunami M (2002) Temporal determinants of olfactory long-term retention in the cricket Gryllus bimaculatus. J Exp Biol 205:1429–1437

    PubMed  Google Scholar 

  • Mauelshagen J (1993) Neural correlates of olfactory learning in an identified neuron in the honeybee brain. J Neurophysiol 69:609–625

    PubMed  CAS  Google Scholar 

  • Menzel R (1990) Learning, memory, and “cognition” in honeybees. In: Kesner Rp Olten DS (ed) Neurobiology of comparative cognition. Erlbaum, Hillsdale, NJ, pp 237–292

    Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Google Scholar 

  • Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53–62

    PubMed  CAS  Google Scholar 

  • Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honeybee. In: Barton-Browne L (ed) Experimental analysis of insect behavior. Springer, Berlin, pp 195–217

    Google Scholar 

  • Menzel R, Greggers U, Hammer M (1993) Functional organization of appetitive learning and memory in a generalist pollinator, the honeybee. In: Lewis AC (ed) Insect Learning. Chapman Hall, London, pp 79–125

    Google Scholar 

  • Menzel R, Manz G, Menzel R, Greggers U (2001) Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learn Mem 8:198–208

    PubMed  CAS  Google Scholar 

  • Minnich DE (1921) An experimental study of the tarsal chemoreceptors of two nymphalid butterflies. J Exp Zool 33:173–203

    CAS  Google Scholar 

  • Minnich DE (1926) The organs of taste on the proboscis of the blowfly Phormia regina Meigen. Anat Rec 34:126

    Google Scholar 

  • Mizunami M, Yokohari F, Takahata M (2004) Further exploration into the adaptive design of the arthropod “microbrain”: I. Sensory and memory-processing systems. Zool Sci 21:1141–1151

    PubMed  Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc B 298:309–354

    Google Scholar 

  • Müller D, Gerber B, Hellstern F, Hammer M, Menzel R (2000) Sensory preconditioning in honeybees. J Exp Biol 203:1351–1364

    PubMed  Google Scholar 

  • Müller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16:541–549

    PubMed  Google Scholar 

  • Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27:159–168

    PubMed  Google Scholar 

  • Müßig L, Richlitzsk A, Rößler R, Eisenhardt D, Menzel R, Leboulle G (2010) Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci 30:7817–7825

    PubMed  Google Scholar 

  • Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27:11736–11747

    PubMed  CAS  Google Scholar 

  • Pamir E, Chakroborty NK, Stollhoff N, Gehring KB, Antemann V, Morgenstern L, Felsenberg J, Eisenhardt D, Menzel R, Nawrot MP (2011) Average group behavior does not represent individual behavior in classical conditioning of the honeybee. Learn Mem 18:733–741

    PubMed  Google Scholar 

  • Pavlov IP (1927) Lectures on conditioned reflexes. International publishers, New York

    Google Scholar 

  • Perisse E, Raymond VD, Néant I, Matsumoto Y, Leclerc C, Moreau M, Sandoz JC (2009) Early calcium increase triggers the formation of olfactory long-term memory in honeybees. BMC Biol 7:30. doi:10.1186/1741-7007-7-30

    PubMed  Google Scholar 

  • Pham-Delègue MH, Bailez O, Blight MM, Masson C, Picard-Nizou AL, Wadhams LJ (1993) Behavioural discrimination of oilseed rape volatiles by the honey bee Apis mellifera L. Chem Senses 18:483–494

    Google Scholar 

  • Ray S, Ferneyhough B (1997a) The effects of age on olfactory learning and memory in the honeybee Apis mellifera. Neuroreport 8:789–793

    PubMed  CAS  Google Scholar 

  • Ray S, Ferneyhough B (1997b) Seasonal variation of proboscis extension reflex conditioning in the honeybee, Apis mellifera. J Apic Res 36:108–110

    Google Scholar 

  • Ray S, Ferneyhough B (1999) Behavioral development and olfactory learning in the honeybee (Apis mellifera). Dev Psychobiol 34:21–27

    PubMed  CAS  Google Scholar 

  • Sakura M, Okada R, Aonuma H (2012) Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Proc R Soc B 279:535–542

    PubMed  Google Scholar 

  • Sandoz JC (2011) Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front Syst Neurosci 5:98. doi:10.3389/fnsys.2011.00098

    PubMed  Google Scholar 

  • Sandoz JC, Pham-Delègue MH (2004) Spontaneous recovery after extinction of the conditioned proboscis extension response in the honeybee. Learn Mem 11:586–597

    PubMed  Google Scholar 

  • Scheiner R, Page RE, Erber J (2001) Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav Brain Res 120:67–73

    PubMed  CAS  Google Scholar 

  • Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293

    Google Scholar 

  • Seeley TD (1995) The wisdom of the hive-the social physiology of honey bee colonies. Harvard University Press, London

    Google Scholar 

  • Si A, Hlliwell P, Maleszka R (2004) Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol Biochem Behav 77:191–197

    PubMed  CAS  Google Scholar 

  • Smith BH (1998) Analysis of interaction in binary odorant mixtures. Physiol Behav 65:397–407

    PubMed  CAS  Google Scholar 

  • Smith BH, Cobey S (1994) The olfactory memory of the honeybee Apis mellifera. II. blocking between odorants in binary mixtures. J Exp Biol 195:91–108

    PubMed  CAS  Google Scholar 

  • Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758–761

    PubMed  CAS  Google Scholar 

  • Stollhoff N, Menzel R, Eisenhardt D (2005) Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (A. mellifera). J Neurosci 25:4485–4492

    PubMed  CAS  Google Scholar 

  • Stollhoff N, Menzel R, Eisenhardt D (2008) One retrieval trial induces reconsolidation in an appetitive learning paradigm in honeybees (A. mellifera). Neurobiol Learn Mem 89:419–425

    PubMed  Google Scholar 

  • Strube-Bloss MF, Nawrot MP, Menzel R (2011) Mushroom body output neurons encode odor-reward associations. J Neurosci 31:3129–3140

    PubMed  CAS  Google Scholar 

  • Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Front Sys Neurosci 2:3. doi:10.3389/neuro.06.003.2008

    Google Scholar 

  • Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179

    CAS  Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the honeybee A. mellifera. Nature 443:931–949

    Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    PubMed  CAS  Google Scholar 

  • Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2:e288. doi:10.1371/journal.pone.0000288

    PubMed  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Physiol 37:1–238

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Belknap, Cambridge

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum HJ (ed) Handbook of sensory physiology Vic. Springer, Berlin, pp 287–616

    Google Scholar 

  • Wright GA, Mustard JA, Simcock NK, Ross-Taylor AAR, McNicholas LD, Popescu A, Marion-Pol F (2010) Parallel reinforcement pathways for conditioned food aversions in the honeybee. Curr Biol 20:2234–2240

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihisa Matsumoto .

Editor information

Editors and Affiliations

Appendix A Column: History of a Classical Conditioning of PER in Honeybees

Appendix A Column: History of a Classical Conditioning of PER in Honeybees

Long before research on PER conditioning started, it was well known that the PER could be elicited by stimulating gustatory organs like the antennae, tarsi, or mouthparts with sugar solution. The PER had thus been detected in bees (Frings 1944; Frings and Frings 1949), flies (Minnich 1926), and butterflies (Minnich 1921), among others. Later, a Japanese researcher who had worked with Karl von Frisch, Masutaro Kuwabara, realized that this appetitive reflex could be conditioned using visual stimuli as CS and sucrose solution delivered to the tarsi as US (Kuwabara 1957). However, Kuwabara’s work did not receive broad attention as shown by the fact that almost 50 years had to pass before other researchers published results on honeybee visual conditioning using Kuwabara’s method (Hori et al. 2006; Hori et al. 2007). For this conditioning to work, Kuwabara and Hori et al. had to cut the bees’ antennae. The low acquisition rates observed in antennae-deprived bees despite long conditioning procedures (Hori et al. 2006; Hori et al. 2007) may be related to this fact. It has been recently shown that antennae deprivation reduces sucrose responsiveness when measured through tarsal stimulation (de Brito Sanchez et al. 2008), probably leading to a reduction of US value and of acquisition and retention performances.

The olfactory conditioning of PER was afterwards established by a student of Kuwabara, Kimihisa Takeda, who reported on this procedure in 1961 (Takeda 1961) using odors as CS and sucrose solution as US. As was common use 50 years ago, Takeda did not report any acquisition, retention, or extinction curves, nor did he provide any statistical analysis of PER responses. He only presented tables with the raw data of single bees, with very low sample sizes. Despite data paucity, lack of statistics, absence of controls, and representative sample sizes, Takeda’s work laid down the experimental principles and the scientific questions that would serve as a basis for future, more controlled research on honeybee learning and memory. He showed for the first time extinction learning (including spontaneous recovery), stimulus generalization and discrimination, conditioned inhibition, and second-order conditioning in the olfactory domain in honeybees. In this way he established olfactory PER conditioning as a useful tool for the study of invertebrate learning and memory.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Matsumoto, Y., Sandoz, JC., Giurfa, M. (2013). Classical Conditioning of the Proboscis Extension Reflex in the Honeybee. In: Ogawa, H., Oka, K. (eds) Methods in Neuroethological Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54331-2_2

Download citation

Publish with us

Policies and ethics