Skip to main content

Epigenetic Regulation of Gene Expression in the Nervous System

  • Chapter
  • First Online:
Methods in Neuroethological Research

Abstract

The term “epigenetics” refers to heritable alterations in chromatin structure due to modifications of genomic DNA and histone proteins. Basic insights about epigenetic alterations are derived from investigations of cell division and development. Recently, many neurobiologists have focused on the mechanisms of epigenetic control to link gene expression with behavioral changes in animals because the long-lasting composition of epigenetic modifications is consistent with the characteristics of long-term memories. There are several kinds of epigenetic modifications: (1) cytosine methylation of genomic DNA, (2) acetylation, (3) methylation, and (4) phosphorylation of histones. In this chapter, we reviewed the fundamental techniques for investigating epigenetic status with specific focus on cytosine methylation of genomic DNA. In addition, methods for analyzing histone modifications are also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21:87–96

    Article  PubMed  CAS  Google Scholar 

  • Araujo FD, Knox JD, Ramchandani S, Pelletier R, Bigey P, Price G, Szyf M, Zannis-Hadjopoulos M (1999) Identification of initiation sites for DNA replication in the human dnmt1 (DNA-methyltransferase) locus. J Biol Chem 274:9335–9341

    Article  PubMed  CAS  Google Scholar 

  • Balana B, Nicoletti C, Zahanich I, Graf EM, Christ T, Boxberger S, Ravens U (2006) 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res 16:949–960

    Article  PubMed  CAS  Google Scholar 

  • Ballester E, Pile LA, Wassarman DA, Wolffe AP, Wade P (2001) A Drosophila MBD family member is a transcriptional corepressor associated with specific genes. Eur J Biochem 268:5397–5406

    Article  Google Scholar 

  • Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T (2005) BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068

    Article  PubMed  CAS  Google Scholar 

  • Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14:268–276

    Article  PubMed  CAS  Google Scholar 

  • Bredy TW, Barad M (2008) The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn Mem 15:39–45

    Article  PubMed  CAS  Google Scholar 

  • Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99:16916–16921

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Zou X, Watanabe H, van Deursen JM, Shen J (2010) CREB binding protein is required for both short-term and long-term memory formation. J Neurosci 30:13066–13077

    Article  PubMed  CAS  Google Scholar 

  • Czuczwar SJ, Patsalos PN (2001) The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15:339–350

    Article  PubMed  CAS  Google Scholar 

  • de Boni L, Tierling S, Roeber S, Walter J, Giese A, Kretzschmar HA (2011) Next-Generation sequencing reveals regional differences of the α-synuclein methylation state independent of Lewy body disease. Neuromolecular Med 13:310–320

    Article  PubMed  CAS  Google Scholar 

  • Elango N, Hunt BG, Goodisman MA, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci USA 106:11206–11211

    Article  PubMed  CAS  Google Scholar 

  • El-Maarri O (2004) SIRPH analysis: SNuPE with IP-RP-HPLC for quantitative measurements of DNA methylation at specific CpG sites. Methods Mol Biol 287:195–205

    PubMed  CAS  Google Scholar 

  • Federman N, Fustiñana MS, Romano A (2009) Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn Mem 16:600–606

    Article  PubMed  Google Scholar 

  • Field LM, Lyko F, Mandrioli M, Prantera G (2004) DNA methylation in insects. Insect Mol Biol 13:109–115

    Article  PubMed  CAS  Google Scholar 

  • Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R (2009) Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics 10:472

    Article  PubMed  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    Article  PubMed  CAS  Google Scholar 

  • Gabor Miklos GL, Maleszka R (2011) Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav 59:399–406

    Article  PubMed  Google Scholar 

  • Glastad KM, Hunt BG, Yi SV, Goodisman MA (2011) DNA methylation in insects: on the brink of the epigenomic era. Insect Mol Biol 20:553–565

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Ding Q, Xia G, Fang Z (2009) EGCG inhibits growth and induces apoptosis in renal cell carcinoma through TFPI-2 overexpression. Oncol Rep 21:635–640

    PubMed  CAS  Google Scholar 

  • Hagemann S, Heil O, Lyko F, Brueckner B (2011) Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One 6:e17388

    Article  PubMed  CAS  Google Scholar 

  • Han J, Li Y, Wang D, Wei C, Yang X, Sui N (2010) Effect of 5-aza-2-deoxycytidine microinjecting into hippocampus and prelimbic cortex on acquisition and retrieval of cocaine-induced place preference in C57BL/6 mice. Eur J Pharmacol 642:93–98

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama D, Sadamoto H, Watanabe T, Wagatsuma A, Kobayashi S, Fujito Y, Yamashita M, Sakakibara M, Kemenes G, Ito E (2006) Requirement of new protein synthesis of a transcription factor for memory consolidation: paradoxical changes in mRNA and protein levels of C/EBP. J Mol Biol 356:569–577

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AR, Hu JF (2006) Directing DNA methylation to inhibit gene expression. Cell Mol Neurobiol 26:425–438

    Article  PubMed  CAS  Google Scholar 

  • Hung MS, Karthikeyan N, Huang B, Koo HC, Kiger J, Shen CKJ (1999) Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc Natl Acad Sci USA 96:11940–11945

    Article  PubMed  CAS  Google Scholar 

  • Ikeda T, Furukawa S, Nakamura J, Sasaki M, Sasaki T (2011) CpG methylation in the hexamerin 110 gene in the European honeybee Apis mellifera. J Insect Sci 11:74

    Article  PubMed  Google Scholar 

  • Jurkowski TP, Meusburger M, Phalke S, Helm M, Nellen W, Reuter G, Jeltsch A (2008) Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14:1663–1670

    Article  PubMed  CAS  Google Scholar 

  • Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature 473:478–483

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Friso S, Choi SW (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 20:917–926

    Article  PubMed  CAS  Google Scholar 

  • Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972

    Article  PubMed  CAS  Google Scholar 

  • Krauss V, Eisenhardt C, Unger T (2009) The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA. PLoS One 4:e7223

    Article  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Kunert N, Marhold J, Stanke J, Stach D, Lyko F (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130:5083–5090

    Article  PubMed  CAS  Google Scholar 

  • Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and RNA as new binding targets of green tea catechins. J Biol Chem 281:17446–17456

    Article  PubMed  CAS  Google Scholar 

  • Kuzuhara T, Iwai Y, Takahashi H, Hatakeyama D, Echigo N (2009) Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr 1:RRN1052

    Article  PubMed  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  PubMed  CAS  Google Scholar 

  • Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Bundrock G, Müller U (2005) Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci 25:11614–11618

    Article  PubMed  CAS  Google Scholar 

  • Lockett GA, Helliwell P, Maleszka R (2010) Involvement of DNA methylation in memory processing in the honey bee. Neuroreport 21:812–816

    Article  PubMed  CAS  Google Scholar 

  • Löscher W (1993) In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett 160:177–180

    Article  PubMed  Google Scholar 

  • Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C (2011) BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res 39:W551–W556

    Article  PubMed  CAS  Google Scholar 

  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    Article  PubMed  Google Scholar 

  • Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97:1498–1506

    Article  PubMed  CAS  Google Scholar 

  • Lyko F, Maleszka R (2011) Insects as innovative models for functional studies of DNA methylation. Trends Genet 4:127–131

    Article  Google Scholar 

  • Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540

    Article  PubMed  CAS  Google Scholar 

  • Marhold K, Kramer E, Kremmer F (2004) Luko, the Drosophila MBB2/3 protein mediates interactions between the MI-2 chromatin complex and CpT/A-methylated DNA. Development 131:6033–6039

    Article  PubMed  CAS  Google Scholar 

  • Miller CA, Campbell SL, Sweatt JD (2008) DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem 89:599–603

    Article  PubMed  CAS  Google Scholar 

  • Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, Yancey CR, Rivera IM, Rubio MD, Rumbaugh G, Sweatt JD (2010) Cortical DNA methylation maintains remote memory. Nat Neurosci 13:664–666

    Article  PubMed  CAS  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  PubMed  CAS  Google Scholar 

  • Moroz LL, Kohn AB (2010) Do different neurons age differently? Direct genome-wide analysis of aging in single identified cholinergic neurons. Front Aging Neurosci 2:1–18

    Google Scholar 

  • Moroz LL (2011) Genomic deciphering of memory mechanisms and multiple origins of neural circuits. In: Abstracts of 12th symposium on invertebrate neurobiology, international society for invertebrate neurobiology, 52

    Google Scholar 

  • Moroz LL, Citarella MR, Kohn AB (2011) Genomic portrait of a neuron: identification and quantification. Abstracts of 12th symposium on invertebrate neurobiology, international society for invertebrate neurobiology, 53

    Google Scholar 

  • Müller U, Hildebrandt H (2002) Nitric oxide/cGMP-mediated protein kinase A activation in the antennal lobes plays an important role in appetitive reflex habituation in the honeybee. J Neurosci 22:8739–8747

    PubMed  Google Scholar 

  • Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T (1993) Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 21:289–299

    Article  PubMed  CAS  Google Scholar 

  • Novak P, Jensen T, Oshiro MM, Wozniak RJ, Nouzova M, Watts GS, Klimecki WT, Kim C, Futscher BW (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66:10664–10670

    Article  PubMed  CAS  Google Scholar 

  • Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27:11736–11747

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Kunieda T, Kubo T (2003) The activity of Mblk-1, a mushroom body-selective transcription factor from the honeybee, is modulated by the Ras/MAPK pathway. J Biol Chem 278:18689–18694

    Article  PubMed  CAS  Google Scholar 

  • Quint A, Cedar H (1981) In vitro methylation of DNA with Hpa II methylase. Nucleic Acids Res 9:633–646

    Article  PubMed  CAS  Google Scholar 

  • Rae PM, Steele RE (1979) Absence of cytosine methylation at C-C-G-G and G-C-G-C sites in the rDNA coding regions and intervening sequences of Drosophila and the rDNA of other insects. Nucleic Acids Res 6:2987–2995

    Article  PubMed  CAS  Google Scholar 

  • Rajavelu A, Tulyasheva Z, Jaiswal R, Jeltsch A, Kuhnert N (2011) The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols. BMC Biochem 12:16

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi T, Kulangara K, Antoniello K, Markram H (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Natl Acad Sci USA 104:13501–13506

    Article  PubMed  CAS  Google Scholar 

  • Robinson KL, Tohidi-Esfahani D, Lo N, Simpson SJ, Sword GA (2011) Evidence for widespread genomic methylation in the migratory locust, Locusta migratoria (Orthoptera: Acrididae). PLoS One 6:e28167

    Article  PubMed  CAS  Google Scholar 

  • Roder K, Hung MS, Lee TL, Lin TY, Xiao H, Isobe K, Juang JL, Shen CKJ (2000) Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol Cell Biol 20:7401–7409

    Article  PubMed  CAS  Google Scholar 

  • Rodic N, Oka M, Hamazaki T, Murawski MR, Jorgensen M, Maatouk DM, Resnick JL, Li E, Terada N (2005) DNA methylation is required for silencing of ant4, an adenine nucleotide translocase selectively expressed in mouse embryonic stem cells and germ cells. Stem Cells 23:1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto H, Sato H, Kobayashi S, Murakami J, Aonuma H, Ando H, Fujito Y, Hamano K, Awaji M, Lukowiak K, Urano A, Ito E (2004) CREB in the pond snail Lymnaea stagnalis: cloning, gene expression, and function in identifiable neurons of the central nervous system. J Neurobiol 58:455–466

    Article  PubMed  CAS  Google Scholar 

  • Salzberg A, Fisher O, Simon-Tov R, Ankri S (2004) Identification of methylated sequences in genomic DNA of adult Drosophila melanogaster. Biochem Biophys Res Commun 322:465–469

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schaefer M, Hagemann S, Hanna K, Lyko F (2009) Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res 69:8127–8132

    Article  PubMed  CAS  Google Scholar 

  • Schaefer M, Lyko F (2007) DNA methylation with a sting: an active DNA methylation system in the honeybee. Bioessays 29:208–211

    Article  PubMed  CAS  Google Scholar 

  • Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24:1590–1595

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  • Shi YY, Huang ZY, Zeng ZJ, Wang ZL, Wu XB, Yan WY (2011) Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae). PLoS One 6:e18808

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H (2011) Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25:1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Simmen MW, Leitgeb S, Charlton J, Jones SJM, Harris BR, Clark VH, Bird A (1999) Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283:1164–1167

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MM, Kerr AR, De Sousa D, Bird A (2007) CpG methylation is targeted to transcriptional units in an invertebrate genome. Genome Res 17:625–631

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Tanaka R, Hamada S, Nakagawa H, Miyata N (2010) Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 20:1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Suetake I, Shimahara H, Ura K, Tate S, Tajima S (2006) Distinct DNA methylation activity of Dnmt3a and Dnmt3b towards naked and nucleosomal DNA. J Biochem 139:503–515

    Article  PubMed  CAS  Google Scholar 

  • Tang LY, Reddy MN, Rasheva V, Lee TL, Lin MJ, Hung MS, Shen CKJ (2003) The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. J Biol Chem 278:33613–33616

    Article  PubMed  CAS  Google Scholar 

  • Tierling S, Souren NY, Gries J, Loporto C, Groth M, Lutsik P, Neitzel H, Utz-Billing I, Gillessen-Kaesbach G, Kentenich H, Griesinger G, Sperling K, Schwinger E, Walter J (2010) Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J Med Genet 47:371–376

    Article  PubMed  CAS  Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the invertebrate–vertebrate boundary. Mol Cell Biol 17:1469–1475

    PubMed  CAS  Google Scholar 

  • Tweedie S, Ng HH, Barlow AL, Turner BM, Hendrich B, Bird A (1999) Vestiges of a DNA methylation system in Drosophila melanogaster? Nat Genet 23:389–390

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson G (2006) Functional CpG methylation system in a social insect. Science 314:645–647

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kikuchi M, Hatakeyama D, Shiga H, Yamamoto T, Aonuma H, Takahata M, Suzuki N, Ito E (2006) Gaseous neuromodulator-related genes expressed in the brain of honeybee Apis mellifera. Dev Neurobiol 67:456–473

    Article  Google Scholar 

  • Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP (2002) Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 321:591–599

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Hatakeyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Hatakeyama, D., Tierling, S., Kuzuhara, T., Müller, U. (2013). Epigenetic Regulation of Gene Expression in the Nervous System. In: Ogawa, H., Oka, K. (eds) Methods in Neuroethological Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54331-2_10

Download citation

Publish with us

Policies and ethics