Skip to main content

Lens Epithelial Cell Proliferation

  • Chapter
  • First Online:
  • 1748 Accesses

Abstract

Cell proliferation in the vertebrate ocular lens is essential for its establishment, development and growth. Lens cell proliferation features very early in its morphogenesis and results in rapid tissue growth, but becomes increasingly restricted, both spatially and temporally, with age. As the lens is established, so are defined growth zones characterised by polarised regions of cell proliferation and subsequent fibre cell differentiation. These growth zones are tightly regulated by growth factors in the surrounding ocular environment. Although lens epithelial cell proliferation persists throughout life, albeit at a markedly reduced rate with increased age, the majority of epithelial cells in the adult lens remain quiescent. If perturbed, as a result of various ocular pathologies, normal lens cell proliferation is deregulated as epithelial cells re-enter the cell cycle; such cellular hyperplasia often compromises lens function and subsequently results in cataract formation. Identifying the key ocular factors, and understanding the underlying mechanisms regulating lens cell proliferation, will further advance our understanding of the aetiology of cataracts that are characterised by aberrant lens cell proliferation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nurse P (2002) Cyclin dependent kinases and cell cycle control (Nobel lecture). Chembiochem 3:596–603

    CAS  PubMed  Google Scholar 

  2. Knox B, Ladiges P, Evans B (1994) Biology. McGraw Hill, Sydney

    Google Scholar 

  3. Griep AE, Zhang P (2004) Lens cell proliferation: the cell cycle. In: Lovicu FJ, Robinson ML (eds) Development of the ocular lens. Cambridge University Press, Cambridge, pp 191–211

    Google Scholar 

  4. Kazlauskas A (2005) The priming/completion paradigm to explain growth factor-dependent cell cycle progression. Growth Factors 23:203–210

    CAS  PubMed  Google Scholar 

  5. Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608

    CAS  PubMed  Google Scholar 

  6. Sanchez I, Dynlacht BD (2005) New insights into cyclins. CDKs and cell cycle control. Semin Cell Dev Biol 16:311–321

    CAS  PubMed  Google Scholar 

  7. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal RNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    CAS  PubMed  Google Scholar 

  8. Vincenzi B, Schiavon G, Silletta M, Santini D, Perrone G, Di Marino M, Angeletti S, Baldi A, Tonini G (2006) Cell cycle alterations and lung cancer. Histol Histopathol 21:423–435

    CAS  PubMed  Google Scholar 

  9. Hanna C, O’Brien JE (1961) Cell production and migration in the epithelial layer of the lens. Arch Ophthalmol 66:103–107

    CAS  PubMed  Google Scholar 

  10. Mikulicich AG, Young RW (1963) Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest Ophthalmol Vis Sci 2:344–354

    CAS  Google Scholar 

  11. Modak SP, Morris G, Yamada T (1968) DNA synthesis and mitotic activity during early development of chick lens. Dev Biol 17:544–561

    CAS  PubMed  Google Scholar 

  12. McAvoy JW (1978) Cell division, cell elongation and distribution of α-, β- and γ-crystallins in the rat lens. J Embryol Exp Morphol 44:149–165

    CAS  PubMed  Google Scholar 

  13. McAvoy JW (1978) Cell division, cell elongation and the coordination of crystallin gene expression during lens morphogenesis in the rat. J Embryol Exp Morphol 45:271–281

    CAS  PubMed  Google Scholar 

  14. Lovicu FJ, McAvoy JW (1999) Spatial and temporal expression of p57 (KIP2) during murine lens development. Mech Dev 86:165–169

    CAS  PubMed  Google Scholar 

  15. Kallifatidis G, Boros J, Shin EH, McAvoy JW, Lovicu FJ (2011) The fate of dividing cells during lens morphogenesis, differentiation and growth. Exp Eye Res 92:502–511

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Coulombre JL, Coulombre AJ (1963) Lens development: fiber elongation and lens orientation. Science 142:1489–1490

    CAS  PubMed  Google Scholar 

  17. Bozanic D, Saraga-Babic M (2004) Cell proliferation during the early stages of human eye development. Anat Embryol (Berl) 208:381–388

    CAS  Google Scholar 

  18. Gao CY, Rampalli AM, Cai HC, He HY, Zelenka PS (1999) Changes in cyclin dependent kinase expression and activity accompanying lens fiber cell differentiation. Exp Eye Res 69:695–703

    CAS  PubMed  Google Scholar 

  19. Fromm L, Overbeek PA (1996) Regulation of cyclin and cyclin-dependent kinase gene expression during lens differentiation requires the retinoblastoma protein. Oncogene 12:69–75

    CAS  PubMed  Google Scholar 

  20. Gao CY, Zelenka PS (1997) Cyclins, cyclin-dependent kinases and differentiation. Bioessays 19:307–315

    PubMed  Google Scholar 

  21. Zhang P, Wong C, DePinho RA, Harper JW, Elledge SJ (1998) Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev 12:3162–3167

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Rampalli AM, Gao CY, Chauthaiwale VM, Zelenka PS (1998) pRb and p107 regulate E2F activity during lens fiber cell differentiation. Oncogene 16:399–408

    CAS  PubMed  Google Scholar 

  23. Hyde RK, Griep AE (2002) Unique roles for E2F1 in the mouse lens in the absence of functional pRB proteins. Invest Ophthalmol Vis Sci 43:1509–1516

    PubMed  Google Scholar 

  24. Lovicu FJ, Robinson ML (2004) Early lens development. In: Lovicu FJ, Robinson ML (eds) Development of the ocular lens. Cambridge University Press, Cambridge, pp 3–23

    Google Scholar 

  25. McAvoy JW, Chamberlain CG (1990) Growth factors in the eye. Prog Growth Factor Res 2:29–43

    CAS  PubMed  Google Scholar 

  26. Lovicu FJ, McAvoy JW (2005) Growth factor regulation of lens development. Dev Biol 280:1–14

    CAS  PubMed  Google Scholar 

  27. Segal MB (1992) Barriers and fluids of the eye and brain. CRC Press, Boca Raton, FL

    Google Scholar 

  28. Davson H (1962) The eye. Academic, New York

    Google Scholar 

  29. Tripathi RC, Millard CB, Tripathi BJ (1989) Protein composition of human aqueous humor: SDS-PAGE analysis of surgical and post-mortem samples. Exp Eye Res 48:117–130

    CAS  PubMed  Google Scholar 

  30. Welge-Lussen U, May CA, Neubauer AS, Prilinger S (2001) Role of tissue growth factors in aqueous humor homeostasis. Curr Opin Ophthalmol 12:94–99

    CAS  PubMed  Google Scholar 

  31. Alemany J, Girbau M, Bassas L, de Pablo F (1990) Insulin receptors and insulin-like growth factor I receptors are functional during organogenesis of the lens. Mol Cell Endocrinol 74:155–162

    CAS  PubMed  Google Scholar 

  32. Bassnett S, Beebe DC (1991) Coincident loss of mitochondria and nuclei during lens fibre differentiation. Int Rev Exp Pathol 32:223–254

    Google Scholar 

  33. Le Roith D, Butler AA (1999) Insulin-like growth factors in pediatric health and disease. J Clin Endocrinol Metab 84:4355–4361

    PubMed  Google Scholar 

  34. Arnold DR, Moshayedi P, Schoen TJ, Jones BE, Chader GJ, Waldbillig RJ (1993) Distribution of IGF-I and -II, IGF binding proteins (IGFBPs) and IGFBP mRNA in ocular fluids and tissues: potential sites of synthesis of IGFBPs in aqueous and vitreous. Exp Eye Res 56:555–565

    CAS  PubMed  Google Scholar 

  35. Burren CP, Berka JL, Edmondson SR, Werther GA, Batch JA (1996) Localization of mRNAs for insulin-like growth factor-I (IGF-I), IGF-I receptor, and IGF binding proteins in rat eye. Invest Ophthalmol Vis Sci 37:1459–1468

    CAS  PubMed  Google Scholar 

  36. Liu J, Chamberlain CG, McAvoy JW (1996) IGF enhancement of FGF-induced fibre differentiation and DNA synthesis in lens explants. Exp Eye Res 63:621–629

    CAS  PubMed  Google Scholar 

  37. Iyengar L, Patkunanathan B, Lynch OT, McAvoy JW, Rasko JE, Lovicu FJ (2006) Aqueous humour- and growth factor-induced lens cell proliferation is dependent on MAPK/ERK1/2 and Akt/PI3-K signalling. Exp Eye Res 83:667–678

    CAS  PubMed  Google Scholar 

  38. Hollenberg MD (1975) Receptors for insulin and epidermal growth factor: relation to synthesis of DNA in cultured rabbit lens epithelium. Arch Biochem Biophys 171:371–377

    CAS  PubMed  Google Scholar 

  39. Reddan JR, Wilson-Dziedzic DC (1983) Insulin growth factor and epidermal growth factor trigger mitosis in lenses cultured in a serum-free medium. Invest Ophthalmol Vis Sci 24:409–416

    CAS  PubMed  Google Scholar 

  40. Ibaraki N, Lin LR, Reddy VN (1996) A study of growth factor receptors in human lens epithelial cells and their relationship to fiber differentiation. Exp Eye Res 63:683–692

    CAS  PubMed  Google Scholar 

  41. Shirke S, Faber SC, Hallem E, Makarenkova HP, Robinson ML, Overbeek PA, Lang RA (2001) Misexpression of IGF-1 in the mouse lens expands the transitional zone and perturbs lens polarization. Mech Dev 101:167–174

    CAS  PubMed  Google Scholar 

  42. Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147

    CAS  PubMed  Google Scholar 

  43. Morrison-Graham K, Schatteman GC, Bork T, Bowen-Pope DF, Weston JA (1992) A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 115:133–142

    CAS  PubMed  Google Scholar 

  44. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691–2700

    CAS  PubMed  Google Scholar 

  45. Reneker LW, Overbeek PA (1996) Lens-specific expression of PDGF-A alters lens growth and development. Dev Biol 180:554–565

    CAS  PubMed  Google Scholar 

  46. Brewitt B, Clark JI (1988) Growth and transparency in the lens, an epithelial tissue, stimulated by pulses of PDGF. Science 242:777–779

    CAS  PubMed  Google Scholar 

  47. Kok A, Lovicu FJ, Chamberlain CG, McAvoy JW (2002) Influence of platelet-derived growth factor on lens epithelial cell proliferation and differentiation. Growth Factors 20:27–34

    CAS  PubMed  Google Scholar 

  48. Wang Q, McAvoy JW, Lovicu FJ (2010) Growth factor signaling in vitreous humor-induced lens fiber differentiation. Invest Ophthalmol Vis Sci 51:3599–3610

    PubMed Central  PubMed  Google Scholar 

  49. Ray S, Gao C, Wyatt K, Fariss RN, Bundek A, Zelenka P, Wistow G (2005) Platelet-derived growth factor D, tissue specific expression in the eye and a key role in control of lens epithelial cell proliferation. J Biol Chem 280:8494–8502

    CAS  PubMed  Google Scholar 

  50. Dawid IB, Taira M, Good PJ, Rebagliati MR (1992) The role of growth factors in embryonic induction in Xenopus laevis. Mol Reprod Dev 32:136–144

    CAS  PubMed  Google Scholar 

  51. Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour JL (2004) Mouse FGF15 is the ortholog of human and chick FGF19 but is not uniquely required for otic induction. Dev Biol 269:264–275

    CAS  PubMed  Google Scholar 

  52. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    CAS  PubMed  Google Scholar 

  53. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2:3005

    Google Scholar 

  54. Lovicu FJ, de Iongh RU, McAvoy JW (1997) Expression of FGF-1 and FGF-2 mRNA during lens morphogenesis, differentiation and growth. Curr Eye Res 16:222–230

    CAS  PubMed  Google Scholar 

  55. Chamberlain CG, McAvoy JW (1997) Fibre differentiation and polarity in the mammalian lens: a key role for FGF. Prog Ret Eye Res 16:443–478

    CAS  Google Scholar 

  56. Govindarajan V, Overbeek PA (2001) Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation. Development 128:1617–1627

    CAS  PubMed  Google Scholar 

  57. Zhao S, Hung FC, Colvin JS, White A, Dai W, Lovicu FJ, Ornitz DM, Overbeek PA (2001) Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128:5051–5060

    CAS  PubMed  Google Scholar 

  58. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22:108–112

    CAS  PubMed  Google Scholar 

  59. Bansal R (2002) Fibroblast growth factors and their receptors in oligodendrocyt development: implications for demyelination and remyelination. Dev Neurosci 24:35–46

    CAS  PubMed  Google Scholar 

  60. de Iongh RU, Lovicu FJ, Hanneken A, Baird A, McAvoy JW (1996) FGF receptor-1 (flg) expression is correlated with fibre differentiation during rat lens morphogenesis and growth. Dev Dyn 206:412–426

    PubMed  Google Scholar 

  61. de Iongh RU, Lovicu FJ, Chamberlain CG, McAvoy JW (1997) Differential expression of fibroblast growth factor receptors during rat lens morphogenesis and growth. Invest Ophthalmol Vis Sci 38:1688–1699

    PubMed  Google Scholar 

  62. Marcelle C, Eichmann A, Halevy O, Breant C, Douarin NL (1994) Distinct developmental expression of a new avian FGFR. Development 120:683–694

    CAS  PubMed  Google Scholar 

  63. Kurose H, Okamoto M, Shimizu H, Bito T, Marcelle C, Woji S, Ohuchi H (2005) FGF19-FGFR4 signalling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo. Dev Growth Diff 47:213–223

    CAS  Google Scholar 

  64. McAvoy JW (1980) Beta- and gamma-crystallin synthesis in rat lens epithelium explanted with neural retinal. Differentiation 17:85–91

    CAS  PubMed  Google Scholar 

  65. West-Mays JA, Pino G, Lovicu FJ (2010) Development and use of the lens epithelial explant system to study lens differentiation and cataractogenesis. Prog Retin Eye Res 29:135–143

    PubMed Central  PubMed  Google Scholar 

  66. Chamberlain CG, McAvoy JW (1989) Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors 1:125–134

    CAS  PubMed  Google Scholar 

  67. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  68. Lakshmanan J, Perheentupa J, Hoath SB, Kim H, Gruters A, Odell C, Fisher DA (1985) Epidermal growth factor in mouse ocular tissue: effects of thyroxine and exogenous epidermal growth factor. Pediatr Res 19:315–319

    CAS  PubMed  Google Scholar 

  69. Jones JT, Akita RW, Sliwkowski MX (1999) Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett 447:227–231

    CAS  PubMed  Google Scholar 

  70. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    CAS  PubMed  Google Scholar 

  72. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010

    PubMed Central  PubMed  Google Scholar 

  73. Majima K (1995) Human lens epithelial cells proliferate in response to exogenous EGF and have EGF and EGF receptor. Ophthalmic Res 27:356–365

    CAS  PubMed  Google Scholar 

  74. Maidment JM, Duncan G, Tamiya S, Collison DJ, Wang L, Wormstone IM (2004) Regional differences in tyrosine kinase receptor signalling components determine differential growth patterns in the human lens. Invest Ophthalmol Vis Sci 45:1427–1435

    PubMed  Google Scholar 

  75. Weng J, Liang Q, Mohan RR, Li Q, Wilson SE (1997) Hepatocyte growth factor, keratinocyte growth factor, and other growth factor-receptor systems in the lens. Invest Ophthalmol Vis Sci 38:1543–1554

    CAS  PubMed  Google Scholar 

  76. Ireland ME, Mrock LK (2000) Differentiation of chick lens epithelial cells: involvement of the epidermal growth factor receptor and endogenous ligand. Invest Ophthalmol Vis Sci 41:183–190

    CAS  PubMed  Google Scholar 

  77. Arora JK, Lysz TW, Zelenka PS (1996) A role for 12(S)- HETE in the response of human lens epithelial cells to epidermal growth factor and insulin. Invest Ophthalmol Vis Sci 37:1411–1418

    CAS  PubMed  Google Scholar 

  78. Haque MS, Arora JK, Dikdan G, Lysz TW, Zelenka PS (1999) The rabbit lens epithelial cell line N/N1003A requires 12-lipoxygenase activity for DNA synthesis in response to EGF. Mol Vis 15:5–8

    Google Scholar 

  79. Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ (1984) Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 223:1079–1082

    CAS  PubMed  Google Scholar 

  80. Wunderlich K, Knorr M (1994) Effect of platelet-derived growth factor PDGF on replication of cultured bovine lens epithelial cells. Opthalmologe 91:98–102

    CAS  Google Scholar 

  81. Wormstone IM, Tamiya S, Marcantonio JM, Reddan JR (2000) Hepatocyte growth factor function and c-Met expression in human lens epithelial cells. Invest Ophthalmol Vis Sci 41:4216–4222

    CAS  PubMed  Google Scholar 

  82. Choi J, Park SY, Joo CK (2004) Hepatocyte growth factor induces proliferation of lens epithelial cells through activation of ERK1/2 and JNK/SAPK. Invest Ophthalmol Vis Sci 45:2696–2704

    PubMed  Google Scholar 

  83. Fleming TP, Song Z, Andley UP (1998) Expression of growth control and differentiation genes in human lens epithelial cells with extended life span. Invest Ophthalmol Vis Sci 39:1387–1398

    CAS  PubMed  Google Scholar 

  84. Hales AM, Chamberlain CG, McAvoy JW (1995) Cataract induction in lenses cultured with transforming growth factor-beta. Invest Ophthalmol Vis Sci 36:1709–1713

    CAS  PubMed  Google Scholar 

  85. Lovicu FJ, Schulz MW, Hales AM, Vincent LN, Overbeek PA, Chamberlain CG, McAvoy JW (2002) TGFbeta induces morphological and molecular changes similar to human anterior subcapsular cataract. Br J Ophthalmol 86:220–226

    PubMed Central  PubMed  Google Scholar 

  86. Gordon-Thomson C, de Iongh RU, Hales AM, Chamberlain CG, McAvoy JW (1998) Differential cataractogenic potency of TGF-beta1, -beta2, and -beta3 and their expression in the postnatal rat eye. Invest Ophthalmol Vis Sci 39:1399–1409

    CAS  PubMed  Google Scholar 

  87. de Iongh RU, Gordon-Thomson C, Chamberlain CG, Hales AM, McAvoy JW (2001) Tgfbeta receptor expression in lens: implications for differentiation and cataractogenesis. Exp Eye Res 72:649–659

    PubMed  Google Scholar 

  88. Lang RA, McAvoy JW (2004) Growth factors in lens development. In: Lovicu FJ, Robinson ML (eds) Development of the ocular lens. Cambridge University Press, New York

    Google Scholar 

  89. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer - a double-edged sword. Trends Cell Biol 11:S44–S51

    CAS  PubMed  Google Scholar 

  90. Chen Z, Gibson TB, Robinson F, Silvestro L, Person G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476

    CAS  PubMed  Google Scholar 

  91. Kyriakias JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316

    Google Scholar 

  92. Hayashi M, Lee JD (2004) Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J Mol Med 82:800–808

    CAS  PubMed  Google Scholar 

  93. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    CAS  PubMed  Google Scholar 

  94. Li DW, Liu JP, Wang J, Mao YW, Hou LH (2003) Expression and activity of the signaling molecules for mitogen-activated protein kinase pathways in human, bovine, and rat lenses. Invest Ophthalmol Vis Sci 44:5277–5286

    PubMed  Google Scholar 

  95. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  96. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    CAS  PubMed  Google Scholar 

  97. Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T (2001) An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 8:1063–1073

    CAS  PubMed  Google Scholar 

  98. Felton-Edkins ZA, Fairley JA, Graham EL, Johnston IM, White RJ, Scott PH (2003) The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J 22:2422–2432

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci 98:10983–10985

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC (2009) The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev Biol 335:305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Hyatt GA, Beebe DC (1993) Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differentiation. Development 117:701–709

    CAS  PubMed  Google Scholar 

  102. McAvoy JW, Chamberlain CG (1989) Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending upon its concentration. Development 107:221–228

    CAS  PubMed  Google Scholar 

  103. Iyengar L, Wang Q, Rasko JE, McAvoy JW, Lovicu FJ (2007) Duration of ERK1/2 phosphorylation induced by FGF or ocular media determines lens cell fate. Differentiation 75:662–668

    CAS  PubMed  Google Scholar 

  104. Iyengar L, Patkunanathan B, McAvoy JW, Lovicu FJ (2009) Growth factors involved in aqueous humour-induced lens cell proliferation. Growth Factors 27:50–62

    CAS  PubMed  Google Scholar 

  105. Coulombre JL, Coulombre AJ (1969) Lens development. IV. Size, shape, and orientation. Invest Ophthalmol 8:251–257

    CAS  PubMed  Google Scholar 

  106. Coulombre JL, Coulombre AJ (1971) Lens development. V. Histological analysis of the mechanism of lens reconstitution from implants of lens epithelium. J Exp Zool 176:15–24

    CAS  PubMed  Google Scholar 

  107. Lovicu FJ, McAvoy JW (2001) FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signalling. Development 128:5075–5084

    CAS  PubMed  Google Scholar 

  108. Le AC, Musil LS (2001) FGF signalling in chick lens development. Dev Biol 233:394–411

    CAS  PubMed  Google Scholar 

  109. Upadhya D, Ogata M, Reneker LW (2013) MAPK1 is required for establishing the pattern of cell proliferation and for cell survival during lens. Development 140:1573–1582

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Stiles CD, Isberg RR, Pledger WJ, Antoniades HN, Scher CD (1979) Control of the Balb/c-3 T3 cell cycle by nutrients and serum factors: analysis using platelet-derived growth factor and platelet-poor plasma. J Cell Physiol 99:395–405

    CAS  PubMed  Google Scholar 

  111. Pan Y, Carbe C, Powers A, Feng GS, Zhang X (2010) Sprouty2-modulated Kras signaling rescues Shp2 deficiency during lens and lacrimal gland development. Development 137:1085–1093

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Janus A, Robak T, Smolewski P (2005) The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell Mol Biol Lett 10:479–498

    CAS  PubMed  Google Scholar 

  113. Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287:390–402

    CAS  PubMed  Google Scholar 

  114. de Iongh RU, Abud HE, Hime GR (2006) WNT/Frizzled signaling in eye development and disease. Front Biosci 11:2442–2464

    PubMed  Google Scholar 

  115. Kerr CL, Huang J, Williams T, West-Mays JA (2012) Activation of the hedgehog signaling pathway in the developing lens stimulates ectopic FoxE3 expression and disruption in fiber cell differentiation. Invest Ophthalmol Vis Sci 53:3316–3330

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Wang Y, Xing K-Y, Lou M (2011) Regulation of cytosolic phospholipase A2 (cPLA2α) and its association with cell proliferation in human lens epithelial cells. Invest Ophthalmol Vis Sci 52:8231–8240

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Jia J, Lin M, Zhang L, York JP, Zhang P (2007) The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol Cell Biol 27:7236–7247

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL (2008) Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321:111–122

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Le TT, Conley KW, Brown NL (2009) Jagged 1 is necessary for normal lens formation. Dev Biol 328:118–126

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Saravanamuthu SS, Gao CY, Zelenka PS (2009) Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol 332:166–176

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Zhou M, Leiberman J, Xu J, Lavker RM (2006) A hierarchy of proliferative cells exists in mouse lens epithelium: implications for lens maintenance. Invest Ophthalmol Vis Sci 47:2997–3003

    PubMed Central  PubMed  Google Scholar 

  122. Majima K, Kojima Y, Ouhashi F (1998) Cell biological analysis with respect to cause of fibrous opacification of the anterior capsule after cataract extraction. Ophthalmologica 212:364–368

    CAS  PubMed  Google Scholar 

  123. Shigemitsu T, Ishiguro K, Shimizu Y, Horiguchi M, Kasahara M, Arakaki S (1999) Immunocytochemical features of lens after cataract tissue–signalling molecules (growth factors, cytokines, other signalling molecules), cytoskeleton proteins, cellular and extracellular matrix proteins. Int Ophthalmol 23:137–144

    CAS  PubMed  Google Scholar 

  124. Shentu X, Yao K, Sun C, Xu W, Wu R (2002) Expression and effect of basic fibroblast growth factor on human cataract lens epithelial cells. Chin Med J (Engl) 115:268–271

    CAS  Google Scholar 

  125. Saika S, Miyamoto T, Ishida I, Shirai K, Ohnishi Y, Ooshima A, McAvoy JW (2002) TGF beta-Smad signalling in postoperative human lens epithelial cells. Br J Ophthalmol 86:1428–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Robman L, Taylor H (2005) External factors in the development of cataract. Eye 19:1074–1082

    CAS  PubMed  Google Scholar 

  127. James E (2007) The etiology of steroid cataract. J Ocul Pharmacol Ther 23:403–420

    CAS  PubMed  Google Scholar 

  128. Eshaghian J, Streeten B (1980) Human posterior subcapsular cataract. An ultrastructural study of the posteriorly migrating cells. Arch Ophthalmol 98:134–143

    CAS  PubMed  Google Scholar 

  129. Greiner J, Chylack L (1979) Posterior subcapsular cataracts: histopathologic study of steroid-associated cataracts. Arch Ophthalmol 97:135–144

    CAS  PubMed  Google Scholar 

  130. Wang C, Dawes LJ, Liu Y, Wen L, Lovicu FJ, McAvoy JW (2013) Dexamethasone influences FGF-induced responses in lens epithelial explants and promotes the posterior capsule coverage that is a feature of glucocorticoid-induced cataract. Exp Eye Res 111:79–87

    CAS  PubMed  Google Scholar 

  131. James ER, Fresco VM, Robertson LL (2005) Glucocorticoid-induced changes in the global gene expression of lens epithelial cells. J Ocul Pharmacol Ther 21:11–27

    CAS  PubMed  Google Scholar 

  132. Gupta V, Awasthi N, Wagner BJ (2007) Specific activation of the glucocorticoid receptor and modulation of signal transduction pathways in human lens epithelial cells. Invest Ophthalmol Vis Sci 48:1724–1734

    PubMed Central  PubMed  Google Scholar 

  133. Moross T, Vaithilingam SS, Styles S, Gardner HA (1984) Autosomal dominant anterior polar cataracts associated with a familial 2;14 translocation. J Med Genet 21:52–53

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Wheeler DT, Mullaney PB, Awad A, Zwaan J (1999) Pyramidal anterior polar cataracts. Ophthalmology 106:2362–2367

    CAS  PubMed  Google Scholar 

  135. Drenckhahn D (1978) Anterior polar cataract and lysosomal alterations in the lens of rats treated with the amphiphilic lipidosis-inducing drugs chloroquine and chlorphentermine. Virchows Arch B Cell Pathol 27:255–266

    CAS  PubMed  Google Scholar 

  136. Eldred JA, Dawes LJ, Wormstone IM (2011) The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 366:1301–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Lee EH, Joo CK (1999) Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens epithelial cells. Invest Ophthalmol Vis Sci 40:2025–2032

    CAS  PubMed  Google Scholar 

  138. Wormstone IM, Wang L, Liu CS (2009) Posterior capsule opacification. Exp Eye Res 88:257–269

    CAS  PubMed  Google Scholar 

  139. Rakic JM, Galand A, Vrensen GF (1997) Separation of fibres from the capsule enhances mitotic activity of human lens epithelium. Exp Eye Res 64:67–72

    CAS  PubMed  Google Scholar 

  140. Rakic JM, Galand A, Vrensen GF (2000) Lens epithelial cell proliferation in human posterior capsule opacification specimens. Exp Eye Res 71:489–494

    CAS  PubMed  Google Scholar 

  141. Behar-Cohen FF, David T, D’Hermies F, Pouliquen YM, Buechler Y, Nova MP, Houston LL, Courtois Y (1995) In vivo inhibition of lens regrowth by fibroblast growth factor 2-saporin. Invest Ophthalmol Vis Sci 36:2434–2448

    CAS  PubMed  Google Scholar 

  142. Duncan G, Wormstone IM, Liu CS, Marcantonio JM, Davies PD (1997) Thapsigargin-coated intraocular lenses inhibit human lens cell growth. Nat Med 3:1026–1028

    CAS  PubMed  Google Scholar 

  143. Pande M, Spalton DJ, Marshall J (1996) Continuous curvilinear capsulorhexis and intraocular lens biocompatibility. J Cataract Refract Surg 22:89–97

    CAS  PubMed  Google Scholar 

  144. James C, Collison DJ, Duncan G (2005) Characterization and functional activity of thrombin receptors in the human lens. Invest Ophthalmol Vis Sci 46:925–932

    PubMed  Google Scholar 

  145. Namiki M, Tagami Y, Yamamoto M, Yamanaka A, Itoh M, Kanoh M (1992) Presence of human epidermal growth factor (hEGF), basic fibroblast growth factor (bFGF) in human aqueous. Nihon Ganka Gakkai Zasshi 96:652–656

    CAS  PubMed  Google Scholar 

  146. Wormstone IM, Liu CS, Rakic JM, Marcantonio JM, Vrensen GF, Duncan G (1997) Human lens epithelial cell proliferation in a protein-free medium. Invest Ophthalmol Vis Sci 38:396–404

    CAS  PubMed  Google Scholar 

  147. Wormstone IM, Del Rio-Tsonis K, McMahon G, Tamiya S, Davies PD, Marcantonio JM, Duncan G (2001) FGF: an autocrine regulator of human lens cell growth independent of added stimuli. Invest Ophthalmol Vis Sci 42:1305–1311

    CAS  PubMed  Google Scholar 

  148. Dawes LJ, Duncan G, Wormstone IM (2013) Age-related differences in signaling efficiency of human lens cells underpin differential wound healing response rates following cataract surgery. Invest Ophthalmol Vis Sci 54:333–342

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Lovicu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Lovicu, F.J., Iyengar, L., Dawes, L.J., McAvoy, J.W. (2014). Lens Epithelial Cell Proliferation. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics