Skip to main content

The Lens Capsule: Synthesis, Remodeling, and MMPs

  • Chapter
  • First Online:
Book cover Lens Epithelium and Posterior Capsular Opacification
  • 1665 Accesses

Abstract

The lens capsule is an amorphous, elastic structure that encapsulates the ocular lens. It is secreted by cells of the lens and is composed primarily of type IV collagen and laminin along with additional extracellular matrix (ECM) components such as entactin/nidogen, heparin sulfate proteoglycans (HSPG), and secreted protein acidic and rich in cysteine (SPARC), which act to stabilize the lens capsule structure. As the lens grows during development and with age, new capsular lamellae are synthesized, deposited, and organized by the lens epithelial and fiber cells. The main receptors of lens cells that adhere them to the ECM of the capsule are the integrins, heterodimeric transmembrane cell adhesion molecules. These adhesion molecules also act as bidirectional signaling molecules, mediating signals between the lens and the surrounding ocular media. The composition and arrangement of both the ECM of the lens capsule and the integrins are altered in fibrotic cataracts such as posterior capsule opacification (PCO) and anterior subcapsular cataract (ASC). This includes the aberrant deposition of ECM components not normally expressed in the lens capsule and a corresponding change in the profile of integrins expressed in the lens. The matrix metalloproteinases (MMPs), a family of matrix-degrading enzymes, have been shown to release growth factors from the lens capsule and activate receptors. They are also aberrantly expressed in PCO and ASC and their inhibition has been shown to suppress events involved in fibrotic cataract formation including lens epithelial cell migration, capsular contraction, and the transformation of cells into myofibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan MK (2004) In: Lovicu FJ, Robinson ML (eds) Development of the ocular lens. Cambridge University Press, Cambridge/New York, pp xv, 398p

    Google Scholar 

  2. Cammarata PR, Cantu-Crouch D, Oakford L, Morrill A (1986) Macromolecular organization of bovine lens capsule. Tissue Cell 18(1):83–97

    CAS  PubMed  Google Scholar 

  3. Cammarata PR, Smith JY (1987) Colocalization of laminin and fibronectin in bovine lens epithelial cells in vitro. In Vitro Cell Dev Biol 23(9):611–620

    CAS  PubMed  Google Scholar 

  4. Kaplony A, Zimmermann DR, Fischer RW, Imhof BA, Odermatt BF, Winterhalter KH, Vaughan L (1991) Tenascin Mr 220,000 isoform expression correlates with corneal cell migration. Development 112(2):605–614

    CAS  PubMed  Google Scholar 

  5. Kelley PB, Sado Y, Duncan MK (2002) Collagen IV in the developing lens capsule. Matrix Biol 21(5):415–423

    CAS  PubMed  Google Scholar 

  6. Parmigiani C, McAvoy J (1984) Localisation of laminin and fibronectin during rat lens morphogenesis. Differentiation 28(1):53–61

    CAS  PubMed  Google Scholar 

  7. Parmigiani CM, McAvoy JW (1991) The roles of laminin and fibronectin in the development of the lens capsule. Curr Eye Res 10(6):501–511

    CAS  PubMed  Google Scholar 

  8. Schulz MW, Chamberlain CG, McAvoy JW (1997) Binding of FGF-1 and FGF-2 to heparan sulphate proteoglycans of the mammalian lens capsule. Growth Factors 14(1):1–13

    CAS  PubMed  Google Scholar 

  9. Krag S, Andreassen TT (2003) Mechanical properties of the human posterior lens capsule. Invest Ophthalmol Vis Sci 44(2):691–696

    PubMed  Google Scholar 

  10. Dong L, Chen Y, Lewis M, Hsieh JC, Reing J, Chaillet JR, Howell CY, Melhem M, Inoue S, Kuszak JR, DeGeest K, Chung AE (2002) Neurologic defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. Lab Invest 82(12):1617–1630

    CAS  PubMed  Google Scholar 

  11. Gross JM, Perkins BD, Amsterdam A, Egana A, Darland T, Matsui JI, Sciascia S, Hopkins N, Dowling JE (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170(1):245–261. doi:10.1534/genetics.104.039727

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Zinkevich NS, Bosenko DV, Link BA, Semina EV (2006) Laminin alpha 1 gene is essential for normal lens development in zebrafish. BMC Dev Biol 6:13. doi:10.1186/1471-213X-6-13

    PubMed Central  PubMed  Google Scholar 

  13. Futter CE, Crowston JG, Allan BD (2005) Interaction with collagen IV protects lens epithelial cells from Fas-dependent apoptosis by stimulating the production of soluble survival factors. Invest Ophthalmol Vis Sci 46(9):3256–3262. doi:10.1167/iovs.05-0086

    PubMed  Google Scholar 

  14. Olivero DK, Furcht LT (1993) Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells in vitro. Invest Ophthalmol Vis Sci 34(10):2825–2834

    CAS  PubMed  Google Scholar 

  15. Lovicu FJ, Chamberlain CG, McAvoy JW (1995) Differential effects of aqueous and vitreous on fiber differentiation and extracellular matrix accumulation in lens epithelial explants. Invest Ophthalmol Vis Sci 36(7):1459–1469

    CAS  PubMed  Google Scholar 

  16. Wederell ED, de Iongh RU (2006) Extracellular matrix and integrin signaling in lens development and cataract. Semin Cell Dev Biol 17(6):759–776. doi:10.1016/j.semcdb.2006.10.006

    CAS  PubMed  Google Scholar 

  17. Bassuk JA, Birkebak T, Rothmier JD, Clark JM, Bradshaw A, Muchowski PJ, Howe CC, Clark JI, Sage EH (1999) Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation. Exp Eye Res 68(3):321–331. doi:10.1006/exer.1998.0608

    CAS  PubMed  Google Scholar 

  18. Norose K, Lo WK, Clark JI, Sage EH, Howe CC (2000) Lenses of SPARC-null mice exhibit an abnormal cell surface-basement membrane interface. Exp Eye Res 71(3):295–307. doi:10.1006/exer.2000.0884

    CAS  PubMed  Google Scholar 

  19. Yan Q, Clark JI, Sage EH (2000) Expression and characterization of SPARC in human lens and in the aqueous and vitreous humors. Exp Eye Res 71(1):81–90. doi:10.1006/exer.2000.0853

    CAS  PubMed  Google Scholar 

  20. Ohkubo S, Takeda H, Higashide T, Ito M, Sakurai M, Shirao Y, Yanagida T, Oda Y, Sado Y (2003) Immunohistochemical and molecular genetic evidence for type IV collagen alpha5 chain abnormality in the anterior lenticonus associated with Alport syndrome. Arch Ophthalmol 121(6):846–850. doi:10.1001/archopht.121.6.846

    CAS  PubMed  Google Scholar 

  21. Colville DJ, Savige J (1997) Alport syndrome. A review of the ocular manifestations. Ophthalmic Genet 18(4):161–173

    CAS  PubMed  Google Scholar 

  22. Cammarata PR, Spiro RG (1985) Identification of noncollagenous components of calf lens capsule: evaluation of their adhesion-promoting activity. J Cell Physiol 125(3):393–402. doi:10.1002/jcp.1041250306

    CAS  PubMed  Google Scholar 

  23. Walker JL, Menko AS (1999) alpha6 Integrin is regulated with lens cell differentiation by linkage to the cytoskeleton and isoform switching. Dev Biol 210(2):497–511. doi:10.1006/dbio.1999.9277

    CAS  PubMed  Google Scholar 

  24. Pierson M, Cordier J, Hervouuet F, Rauber G (1963) An unusual congenital and familial congenital malformative combination involving the eye and kidney. J Genet Hum 12:184–213

    CAS  PubMed  Google Scholar 

  25. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wuhl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dotsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13(21):2625–2632. doi:10.1093/hmg/ddh284

    CAS  PubMed  Google Scholar 

  26. Durkin ME, Wewer UM, Chung AE (1995) Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene. Genomics 26(2):219–228

    CAS  PubMed  Google Scholar 

  27. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, Mann K, Timpl R, Krieg T, Engel J et al (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10(11):3137–3146

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Schulz MW, Chamberlain CG, de Iongh RU, McAvoy JW (1993) Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development 118(1):117–126

    CAS  PubMed  Google Scholar 

  29. Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol 19(7):569–580

    CAS  PubMed  Google Scholar 

  30. Gilbert RE, Cox AJ, Kelly DJ, Wilkinson-Berka JL, Sage EH, Jerums G, Cooper ME (1999) Localization of secreted protein acidic and rich in cysteine (SPARC) expression in the rat eye. Connect Tissue Res 40(4):295–303

    CAS  PubMed  Google Scholar 

  31. Kantorow M, Horwitz J, Carper D (1998) Up-regulation of osteonectin/SPARC in age-related cataractous human lens epithelia. Mol Vis 4:17

    CAS  PubMed  Google Scholar 

  32. Kantorow M, Huang Q, Yang XJ, Sage EH, Magabo KS, Miller KM, Horwitz J (2000) Increased expression of osteonectin/SPARC mRNA and protein in age-related human cataracts and spatial expression in the normal human lens. Mol Vis 6:24–29

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Maillard C, Malaval L, Delmas PD (1992) Immunological screening of SPARC/Osteonectin in nonmineralized tissues. Bone 13(3):257–264

    CAS  PubMed  Google Scholar 

  34. Sawhney RS (1995) Identification of SPARC in the anterior lens capsule and its expression by lens epithelial cells. Exp Eye Res 61(5):645–648

    CAS  PubMed  Google Scholar 

  35. Yan Q, Perdue N, Blake D, Sage EH (2005) Absence of SPARC in murine lens epithelium leads to increased deposition of laminin-1 in lens capsule. Invest Ophthalmol Vis Sci 46(12):4652–4660. doi:10.1167/iovs.05-0460

    PubMed  Google Scholar 

  36. Johnson MC, Beebe DC (1984) Growth, synthesis and regional specialization of the embryonic chicken lens capsule. Exp Eye Res 38(6):579–592

    CAS  PubMed  Google Scholar 

  37. Kupprion C, Motamed K, Sage EH (1998) SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273(45):29635–29640

    CAS  PubMed  Google Scholar 

  38. Maurer P, Hohenadl C, Hohenester E, Gohring W, Timpl R, Engel J (1995) The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV. J Mol Biol 253(2):347–357. doi:10.1006/jmbi.1995.0557

    CAS  PubMed  Google Scholar 

  39. Mayer U, Aumailley M, Mann K, Timpl R, Engel J (1991) Calcium-dependent binding of basement membrane protein BM-40 (osteonectin, SPARC) to basement membrane collagen type IV. Eur J Biochem 198(1):141–150

    CAS  PubMed  Google Scholar 

  40. Raines EW, Lane TF, Iruela-Arispe ML, Ross R, Sage EH (1992) The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proc Natl Acad Sci U S A 89(4):1281–1285

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Sage H, Vernon RB, Funk SE, Everitt EA, Angello J (1989) SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca + 2-dependent binding to the extracellular matrix. J Cell Biol 109(1):341–356

    CAS  PubMed  Google Scholar 

  42. Sasaki T, Hohenester E, Gohring W, Timpl R (1998) Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. EMBO J 17(6):1625–1634. doi:10.1093/emboj/17.6.1625

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Walker J, Menko AS (2009) Integrins in lens development and disease. Exp Eye Res 88(2):216–225. doi:10.1016/j.exer.2008.06.020

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Thorsteinsdottir S, Roelen BA, Freund E, Gaspar AC, Sonnenberg A, Mummery CL (1995) Expression patterns of laminin receptor splice variants alpha 6A beta 1 and alpha 6B beta 1 suggest different roles in mouse development. Dev Dyn 204(3):240–258. doi:10.1002/aja.1002040304

    CAS  PubMed  Google Scholar 

  45. Wu JE, Santoro SA (1994) Complex patterns of expression suggest extensive roles for the alpha 2 beta 1 integrin in murine development. Dev Dyn 199(4):292–314. doi:10.1002/aja.1001990405

    CAS  PubMed  Google Scholar 

  46. Dawes LJ, Elliott RM, Reddan JR, Wormstone YM, Wormstone IM (2007) Oligonucleotide microarray analysis of human lens epithelial cells: TGFbeta regulated gene expression. Mol Vis 13:1181–1197

    CAS  PubMed  Google Scholar 

  47. Bassnett S, Missey H, Vucemilo I (1999) Molecular architecture of the lens fiber cell basal membrane complex. J Cell Sci 112(Pt 13):2155–2165

    CAS  PubMed  Google Scholar 

  48. Duncan MK, Kozmik Z, Cveklova K, Piatigorsky J, Cvekl A (2000) Overexpression of PAX6(5a) in lens fiber cells results in cataract and upregulation of (alpha)5(beta)1 integrin expression. J Cell Sci 113(Pt 18):3173–3185

    CAS  PubMed  Google Scholar 

  49. Menko AS, Philip NJ (1995) Beta 1 integrins in epithelial tissues: a unique distribution in the lens. Exp Cell Res 218(2):516–521. doi:10.1006/excr.1995.1186

    CAS  PubMed  Google Scholar 

  50. Wederell ED, Brown H, O’Connor M, Chamberlain CG, McAvoy JW, de Iongh RU (2005) Laminin-binding integrins in rat lens morphogenesis and their regulation during fibre differentiation. Exp Eye Res 81(3):326–339. doi:10.1016/j.exer.2005.02.005

    CAS  PubMed  Google Scholar 

  51. Nishi O, Nishi K, Mano C, Ichihara M, Honda T, Saitoh I (1997) Inhibition of migrating lens epithelial cells by blocking the adhesion molecule integrin: a preliminary report. J Cataract Refract Surg 23(6):860–865

    CAS  PubMed  Google Scholar 

  52. Walker JL, Zhang L, Zhou J, Woolkalis MJ, Menko AS (2002) Role for alpha 6 integrin during lens development: Evidence for signaling through IGF-1R and ERK. Dev Dyn 223(2):273–284. doi:10.1002/dvdy.10050

    CAS  PubMed  Google Scholar 

  53. De Arcangelis A, Mark M, Kreidberg J, Sorokin L, Georges-Labouesse E (1999) Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 126(17):3957–3968

    PubMed  Google Scholar 

  54. Simirskii VN, Wang Y, Duncan MK (2007) Conditional deletion of beta1-integrin from the developing lens leads to loss of the lens epithelial phenotype. Dev Biol 306(2):658–668. doi:10.1016/j.ydbio.2007.04.004

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Font RL, Brownstein S (1974) A light and electron microscopic study of anterior subcapsular cataracts. Am J Ophthalmol 78(6):972–984

    CAS  PubMed  Google Scholar 

  56. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154(1):8–20

    CAS  PubMed  Google Scholar 

  57. Novotny GE, Pau H (1984) Myofibroblast-like cells in human anterior capsular cataract. Virchows Arch A Pathol Anat Histopathol 404(4):393–401

    CAS  PubMed  Google Scholar 

  58. Saika S (2004) Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res 23(3):283–305. doi:10.1016/j.preteyeres.2004.02.004

    CAS  PubMed  Google Scholar 

  59. Wormstone IM, Tamiya S, Anderson I, Duncan G (2002) TGF-beta2-induced matrix modification and cell transdifferentiation in the human lens capsular bag. Invest Ophthalmol Vis Sci 43(7):2301–2308

    PubMed  Google Scholar 

  60. Eldred JA, Dawes LJ, Wormstone IM (2011) The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 366(1568):1301–1319. doi:10.1098/rstb.2010.0341

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kappelhof JP, Vrensen GF (1992) The pathology of after-cataract. A minireview. Acta ophthalmol Suppl (205):13–24

    Google Scholar 

  62. de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW (2005) Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179(1–2):43–55. doi:10.1159/000084508

    PubMed  Google Scholar 

  63. Zuk A, Hay ED (1994) Expression of beta 1 integrins changes during transformation of avian lens epithelium to mesenchyme in collagen gels. Dev Dyn 201(4):378–393. doi:10.1002/aja.1002010409

    CAS  PubMed  Google Scholar 

  64. Dwivedi DJ, Pino G, Banh A, Nathu Z, Howchin D, Margetts P, Sivak JG, West-Mays JA (2006) Matrix metalloproteinase inhibitors suppress transforming growth factor-beta-induced subcapsular cataract formation. Am J Pathol 168(1):69–79

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Godin D, Ivan E, Johnson C, Magid R, Galis ZS (2000) Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation 102(23):2861–2866

    CAS  PubMed  Google Scholar 

  66. Hales AM, Chamberlain CG, Dreher B, McAvoy JW (1999) Intravitreal injection of TGFbeta induces cataract in rats. Invest Ophthalmol Vis Sci 40(13):3231–3236

    CAS  PubMed  Google Scholar 

  67. Hales AM, Chamberlain CG, McAvoy JW (1995) Cataract induction in lenses cultured with transforming growth factor-beta. Invest Ophthalmol Vis Sci 36(8):1709–1713

    CAS  PubMed  Google Scholar 

  68. Robertson JV, Nathu Z, Najjar A, Dwivedi D, Gauldie J, West-Mays JA (2007) Adenoviral gene transfer of bioactive TGFbeta1 to the rodent eye as a novel model for anterior subcapsular cataract. Mol Vis 13:457–469

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Lovicu FJ, Schulz MW, Hales AM, Vincent LN, Overbeek PA, Chamberlain CG, McAvoy JW (2002) TGFbeta induces morphological and molecular changes similar to human anterior subcapsular cataract. Br J Ophthalmol 86(2):220–226

    PubMed Central  PubMed  Google Scholar 

  70. Saika S, Miyamoto T, Tanaka S, Tanaka T, Ishida I, Ohnishi Y, Ooshima A, Ishiwata T, Asano G, Chikama T, Shiraishi A, Liu CY, Kao CW, Kao WW (2003) Response of lens epithelial cells to injury: role of lumican in epithelial-mesenchymal transition. Invest Ophthalmol Vis Sci 44(5):2094–2102

    PubMed  Google Scholar 

  71. Dawes LJ, Eldred JA, Anderson IK, Sleeman M, Reddan JR, Duncan G, Wormstone IM (2008) TGF beta-induced contraction is not promoted by fibronectin-fibronectin receptor interaction, or alpha SMA expression. Invest Ophthalmol Vis Sci 49(2):650–661. doi:10.1167/iovs.07-0586

    PubMed  Google Scholar 

  72. Yoshino M, Kurosaka D, Obazawa M, Takayama F (2001) Presence of alpha 5 beta 1 integrin and fibronectin in the anterior subcapsular cataract. Nippon Ganka Gakkai Zasshi 105(2):83–87

    CAS  PubMed  Google Scholar 

  73. Kim JT, Lee DH, Chung KH, Kang IC, Kim DS, Joo CK (2002) Inhibitory effects of salmosin, a disintegrin, on posterior capsular opacification in vitro and in vivo. Exp Eye Res 74(5):585–594. doi:10.1006/exer.2001.1150

    CAS  PubMed  Google Scholar 

  74. Palmade F, Sechoy-Chambon O, Regnouf de Vains JB, Coquelet C, Bonne C (1994) Inhibition of cell adhesion to lens capsule by LCM 1910, an RGD-derived peptide. J Ocul Pharmacol 10(4):623–632

    CAS  PubMed  Google Scholar 

  75. Lygoe KA, Norman JT, Marshall JF, Lewis MP (2004) AlphaV integrins play an important role in myofibroblast differentiation. Wound Repair Regen 12(4):461–470. doi:10.1111/j.1067-1927.2004.12402.x

    PubMed  Google Scholar 

  76. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323. doi:10.1083/jcb.200704042

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sponer U, Pieh S, Soleiman A, Skorpik C (2005) Upregulation of alphavbeta6 integrin, a potent TGF-beta1 activator, and posterior capsule opacification. J Cataract Refract Surg 31(3):595–606. doi:10.1016/j.jcrs.2004.05.058

    PubMed  Google Scholar 

  78. Sheppard D (2004) Roles of alphav integrins in vascular biology and pulmonary pathology. Curr Opin Cell Biol 16(5):552–557. doi:10.1016/j.ceb.2004.06.017

    CAS  PubMed  Google Scholar 

  79. Weaver MS, Toida N, Sage EH (2007) Expression of integrin-linked kinase in the murine lens is consistent with its role in epithelial-mesenchymal transition of lens epithelial cells in vitro. Mol Vis 13:707–718

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. doi:10.1016/j.cell.2010.03.015

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Sivak JM, Fini ME (2002) MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res 21(1):1–14

    CAS  PubMed  Google Scholar 

  82. Slansky HH, Freeman MI, Itoi M (1968) Collagenolytic activity in bovine corneal epithelium. Arch Ophthalmol 80(4):496–498

    CAS  PubMed  Google Scholar 

  83. Brown MM, Brown GC, Duker JS, Tasman WS, Augsburger JJ (1994) Exudative retinopathy of adults: a late sequela of retinopathy of prematurity. Int Ophthalmol 18(5):281–285

    PubMed  Google Scholar 

  84. Das A, McGuire PG, Eriqat C, Ober RR, DeJuan E Jr, Williams GA, McLamore A, Biswas J, Johnson DW (1999) Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci 40(3):809–813

    CAS  PubMed  Google Scholar 

  85. Yan X, Tezel G, Wax MB, Edward DP (2000) Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol 118(5):666–673

    CAS  PubMed  Google Scholar 

  86. Fini ME, Parks WC, Rinehart WB, Girard MT, Matsubara M, Cook JR, West-Mays JA, Sadow PM, Burgeson RE, Jeffrey JJ, Raizman MB, Krueger RR, Zieske JD (1996) Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury. Am J Pathol 149(4):1287–1302

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Di Girolamo N, Lloyd A, McCluskey P, Filipic M, Wakefield D (1997) Increased expression of matrix metalloproteinases in vivo in scleritis tissue and in vitro in cultured human scleral fibroblasts. Am J Pathol 150(2):653–666

    PubMed Central  PubMed  Google Scholar 

  88. El-Shabrawi YG, Christen WG, Foster SC (2000) Correlation of metalloproteinase-2 and -9 with proinflammatory cytokines interleukin-1b, interleukin-12 and the interleukin-1 receptor antagonist in patients with chronic uveitis. Curr Eye Res 20(3):211–214

    CAS  PubMed  Google Scholar 

  89. Di Girolamo N, Wakefield D, Coroneo MT (2000) Differential expression of matrix metalloproteinases and their tissue inhibitors at the advancing pterygium head. Invest Ophthalmol Vis Sci 41(13):4142–4149

    PubMed  Google Scholar 

  90. Plantner JJ, Jiang C, Smine A (1998) Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration. Exp Eye Res 67(6):637–645. doi:10.1006/exer.1998.0552

    CAS  PubMed  Google Scholar 

  91. West-Mays JA, Pino G (2007) Matrix metalloproteinases as mediators of primary and secondary cataracts. Expert Rev Ophthalmol 2(6):931–938. doi:10.1586/17469899.2.6.931

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Fini ME, Girard MT, Matsubara M, Bartlett JD (1995) Unique regulation of the matrix metalloproteinase, gelatinase B. Invest Ophthalmol Vis Sci 36(3):622–633

    CAS  PubMed  Google Scholar 

  93. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    CAS  PubMed  Google Scholar 

  94. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477(1–2):267–283

    CAS  PubMed  Google Scholar 

  95. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74(2):111–122

    CAS  PubMed  Google Scholar 

  96. Dadoukis P, Klagas I, Komnenou A, Karakiulakis G, Karoutis A, Karampatakis V, Papakonstantinou E (2013) Infrared irradiation alters the expression of matrix metalloproteinases and glycosaminoglycans in the cornea and crystalline lens. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. doi:10.1007/s00417-013-2349-9

  97. Alapure BV, Praveen MR, Gajjar DU, Vasavada AR, Parmar TJ, Arora AI (2012) Matrix metalloproteinase-2 and -9 activities in the human lens epithelial cells and serum of steroid induced posterior subcapsular cataracts. Mol Vis 18:64–73

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Eldred JA, Hodgkinson LM, Dawes LJ, Reddan JR, Edwards DR, Wormstone IM (2012) MMP2 activity is critical for TGFbeta2-induced matrix contraction–implications for fibrosis. Invest Ophthalmol Vis Sci 53(7):4085–4098. doi:10.1167/iovs.12-9457

    CAS  PubMed  Google Scholar 

  99. Nathu Z, Dwivedi DJ, Reddan JR, Sheardown H, Margetts PJ, West-Mays JA (2009) Temporal changes in MMP mRNA expression in the lens epithelium during anterior subcapsular cataract formation. Exp Eye Res 88(2):323–330. doi:10.1016/j.exer.2008.08.014

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Hodgkinson LM, Duncan G, Wang L, Pennington CJ, Edwards DR, Wormstone IM (2007) MMP and TIMP expression in quiescent, dividing, and differentiating human lens cells. Invest Ophthalmol Vis Sci 48(9):4192–4199. doi:10.1167/iovs.06-1371

    PubMed  Google Scholar 

  101. Chang PY, Bjornstad KA, Rosen CJ, Lin S, Blakely EA (2007) Particle radiation alters expression of matrix metalloproteases resulting in ECM remodeling in human lens cells. Radiat Environ Biophys 46(2):187–194. doi:10.1007/s00411-006-0087-7

    CAS  PubMed  Google Scholar 

  102. Li JH, Wang NL, Wang JJ (2008) Expression of matrix metalloproteinases of human lens epithelial cells in the cultured lens capsule bag. Eye 22(3):439–444. doi:10.1038/sj.eye.6702735

    PubMed  Google Scholar 

  103. Jiang Q, Zhou C, Bi Z, Wan Y (2006) EGF-induced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. J Ocul Pharmacol Ther 22(2):93–102. doi:10.1089/jop.2006.22.93

    CAS  PubMed  Google Scholar 

  104. Descamps FJ, Martens E, Proost P, Starckx S, Van den Steen PE, Van Damme J, Opdenakker G (2005) Gelatinase B/matrix metalloproteinase-9 provokes cataract by cleaving lens betaB1 crystallin. FASEB J 19(1):29–35. doi:10.1096/fj.04-1837com

    CAS  PubMed  Google Scholar 

  105. John M, Jaworski C, Chen Z, Subramanian S, Ma W, Sun F, Li D, Spector A, Carper D (2004) Matrix metalloproteinases are down-regulated in rat lenses exposed to oxidative stress. Exp Eye Res 79(6):839–846. doi:10.1016/j.exer.2004.08.025

    CAS  PubMed  Google Scholar 

  106. Sachdev NH, Di Girolamo N, Nolan TM, McCluskey PJ, Wakefield D, Coroneo MT (2004) Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation. Invest Ophthalmol Vis Sci 45(11):4075–4082. doi:10.1167/iovs.03-1336

    PubMed  Google Scholar 

  107. Wong TT, Daniels JT, Crowston JG, Khaw PT (2004) MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol 88(7):868–872. doi:10.1136/bjo.2003.034629

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Seomun Y, Kim J, Lee EH, Joo CK (2001) Overexpression of matrix metalloproteinase-2 mediates phenotypic transformation of lens epithelial cells. Biochem J 358(Pt 1):41–48

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Kawashima Y, Saika S, Miyamoto T, Yamanaka O, Okada Y, Tanaka S, Ohnishi Y (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases of fibrous humans lens capsules with intraocular lenses. Curr Eye Res 21(6):962–967

    CAS  PubMed  Google Scholar 

  110. Tamiya S, Wormstone IM, Marcantonio JM, Gavrilovic J, Duncan G (2000) Induction of matrix metalloproteinases 2 and 9 following stress to the lens. Exp Eye Res 71(6):591–597. doi:10.1006/exer.2000.0916

    CAS  PubMed  Google Scholar 

  111. Richiert DM, Ireland ME (1999) Matrix metalloproteinase secretion is stimulated by TGF-beta in cultured lens epithelial cells. Curr Eye Res 19(3):269–275

    CAS  PubMed  Google Scholar 

  112. Smine A, Plantner JJ (1997) Membrane type-1 matrix metalloproteinase in human ocular tissues. Curr Eye Res 16(9):925–929

    CAS  PubMed  Google Scholar 

  113. Tholozan FM, Quinlan RA (2007) Lens cells: more than meets the eye. Int J Biochem Cell Biol 39(10):1754–1759. doi:10.1016/j.biocel.2007.06.021

    CAS  PubMed  Google Scholar 

  114. Hodgkinson LM, Wang L, Duncan G, Edwards DR, Wormstone IM (2010) ADAM and ADAMTS gene expression in native and wound healing human lens epithelial cells. Mol Vis 16:2765–2776

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Pladzyk A, Reddy AB, Yadav UC, Tammali R, Ramana KV, Srivastava SK (2006) Inhibition of aldose reductase prevents lipopolysaccharide-induced inflammatory response in human lens epithelial cells. Invest Ophthalmol Vis Sci 47(12):5395–5403. doi:10.1167/iovs.06-0469

    PubMed  Google Scholar 

  116. Awasthi N, Wang-Su ST, Wagner BJ (2008) Downregulation of MMP-2 and -9 by proteasome inhibition: a possible mechanism to decrease LEC migration and prevent posterior capsular opacification. Invest Ophthalmol Vis Sci 49(5):1998–2003. doi:10.1167/iovs.07-0624

    PubMed Central  PubMed  Google Scholar 

  117. Morarescu D, West-Mays JA, Sheardown HD (2010) Effect of delivery of MMP inhibitors from PDMS as a model IOL material on PCO markers. Biomaterials 31(8):2399–2407. doi:10.1016/j.biomaterials.2009.11.108

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Hazra S, Guha R, Jongkey G, Palui H, Mishra A, Vemuganti GK, Basak SK, Mandal TK, Konar A (2012) Modulation of matrix metalloproteinase activity by EDTA prevents posterior capsular opacification. Mol Vis 18:1701–1711

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Mackay AR, Hartzler JL, Pelina MD, Thorgeirsson UP (1990) Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen. J Biol Chem 265(35):21929–21934

    CAS  PubMed  Google Scholar 

  120. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13(5):534–540

    CAS  PubMed  Google Scholar 

  121. Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT, Min D, Succar L, Rangan GK, Hu M, Henderson BR, Alexander SI, Harris DC (2009) Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol 175(2):580–591. doi:10.2353/ajpath.2009.080983

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Korol A, Pino G, Dwivedi D, Robertson JV, Deschamps PA, West-Mays JA (2014) Matrix metalloproteinase-9 null mice are resistant to TGF-beta-induced anterior subcapsular cataract formation. Am J Pathol. doi:10.1016/j.ajpath.2014.03.013

    PubMed  Google Scholar 

  123. Banh A, Deschamps PA, Vijayan MM, Sivak JG, West-Mays JA (2007) The role of Hsp70 and Hsp90 in TGF-beta-induced epithelial-to-mesenchymal transition in rat lens epithelial explants. Mol Vis 13:2248–2262

    PubMed  Google Scholar 

  124. George SJ, Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14(3):100–105. doi:10.1016/j.tcm.2003.12.008

    CAS  PubMed  Google Scholar 

  125. Ho AT, Voura EB, Soloway PD, Watson KL, Khokha R (2001) MMP inhibitors augment fibroblast adhesion through stabilization of focal adhesion contacts and up-regulation of cadherin function. J Biol Chem 276(43):40215–40224. doi:10.1074/jbc.M101647200

    CAS  PubMed  Google Scholar 

  126. Mei JM, Borchert GL, Donald SP, Phang JM (2002) Matrix metalloproteinase(s) mediate(s) NO-induced dissociation of beta-catenin from membrane bound E-cadherin and formation of nuclear beta-catenin/LEF-1 complex. Carcinogenesis 23(12):2119–2122

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. West-Mays .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

West-Mays, J.A., Korol, A. (2014). The Lens Capsule: Synthesis, Remodeling, and MMPs. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics